
Package: Rdistance (via r-universe)
September 5, 2024

Type Package

Title Distance-Sampling Analyses for Density and Abundance Estimation

Version 3.1.2

Date 2024-04-08

Maintainer Trent McDonald <trent@mcdonalddatasciences.com>

Description Distance-sampling analyses (Buckland et al., (2015)
<doi:10.1007/978-3-319-19219-2>) estimate density and abundance
of survey targets (e.g., animals) when detection declines with
distance. Distance-sampling is popular ecology, especially when
survey targets are observed from aerial platforms (e.g.,
airplane or drone), surface vessels (e.g., boat or truck), or
along walking transects. Both point and line transects can be
analyzed. Outputs include overall (study area) density and
abundance, effective sampling distances, and model fit
statistics. A large suite of classical, parametric detection
functions (e.g., half-normal, hazard rate) is included along
with uncommon parametric functions (e.g., Gamma, negative
exponential). Non-parametric smoothed distance functions are
included. Measurement unit integrity is enforced via internal
unit conversion. The help files and vignettes have been vetted
by multiple authors and tested in workshop settings.

License GNU General Public License

URL https://github.com/tmcd82070/Rdistance/wiki

BugReports https://github.com/tmcd82070/Rdistance/issues

Suggests knitr, rmarkdown, testthat (>= 3.0.0), devtools

VignetteBuilder knitr

Depends R (>= 3.5.0)

Imports graphics, stats, utils, units, crayon

RoxygenNote 7.3.1

Encoding UTF-8

Config/testthat/edition 3

1

https://doi.org/10.1007/978-3-319-19219-2
https://github.com/tmcd82070/Rdistance/wiki
https://github.com/tmcd82070/Rdistance/issues

2 Contents

Repository https://tmcd82070.r-universe.dev

RemoteUrl https://github.com/tmcd82070/rdistance

RemoteRef HEAD

RemoteSha 8b7535891132b7bcf1555112ee33399dfccd18f0

Contents
Rdistance-package . 3
abundEstim . 5
AIC.dfunc . 10
autoDistSamp . 11
coef.dfunc . 14
colorize . 15
cosine.expansion . 16
dfuncEstim . 17
dfuncSmu . 24
EDR . 29
effectiveDistance . 31
estimateN . 32
ESW . 34
F.double.obs.prob . 35
F.gx.estim . 36
F.maximize.g . 38
F.nLL . 39
F.start.limits . 41
Gamma.like . 43
Gamma.start.limits . 45
getDfuncModelFrame . 46
halfnorm.like . 47
hazrate.like . 49
hermite.expansion . 51
integration.constant . 52
isUnitless . 54
likeParamNames . 55
lines.dfunc . 56
logistic.like . 57
logistic.start.limits . 59
negexp.like . 60
perpDists . 62
plot.dfunc . 63
predict.dfunc . 67
print.abund . 69
print.dfunc . 70
RdistanceControls . 71
secondDeriv . 73
simple.expansion . 74
smu.like . 75

Rdistance-package 3

sparrowDetectionData . 77
sparrowSiteData . 78
summary.abund . 79
summary.dfunc . 80
thrasherDetectionData . 82
thrasherSiteData . 83
uniform.like . 84
uniform.start.limits . 85

Index 87

Rdistance-package Rdistance - Distance Sampling Analyses for Abundance Estimation

Description

Rdistance contains functions and associated routines to analyze distance-sampling data collected
on point or line transects. Some of Rdistance’s features include:

• Accommodation of both point and line transect analyses in one routine (dfuncEstim).

• Regression-like formula for inclusion of covariate in distance functions (dfuncEstim).

• Automatic bootstrap confidence intervals (abundEstim).

• Availability of both study-area and site-level abundance estimates (abundEstim).

• Classical, parametric distance functions (halfnorm.like, hazrate.like), and expansion
functions (cosine.expansion, hermite.expansion, simple.expansion).

• Non-classic distance functions (Gamma.like, negexp.like, uniform.like) and a non-parametric
smoother dfuncSmu).

• User defined distance functions.

• Automated distance function fits and selection autoDistSamp.

• Extended vignettes.

• print, plot, predict, coef, and summary methods for distance function objects and abun-
dance classes.

Background

Distance-sampling is a popular method for abundance estimation in ecology. Line transect surveys
are conducted by traversing randomly placed transects in a study area with the objective of sighting
animals and estimating density or abundance. Data collected during line transect surveys consists of
sighting records for targets, usually either individuals or groups of individuals. Among the collected
data, off-transect distances are recorded or computed from other information (see perpDists). Off-
transect distances are the perpendicular distances from the transect to the location of the initial
sighting cue. The actual locations of sighted targets are often recorded or computed. When groups
are the target, the number of individuals in the group is recorded.

Point transect surveys are similar except that observers stop one or more times along the transect
to observe targets. This is a popular method for avian surveys where detections are often auditory

4 Rdistance-package

cues, but is also appropriate when automated detectors are placed along a route. Point transect
surveys collect distances from the observer to the target and are sometimes called radial distances.

A fundamental characteristic of both line and point-based distance sampling analyses is that prob-
ability of detecting a target declines as off-transect or radial distances increase. Targets far from
the observer are usually harder to detect than closer targets. In most classical line transect studies,
targets on the transect (off-transect distance = 0) are assume to be sighted with 100% probability.
This assumption allows estimation of the proportion of targets missed during the survey, and thus it
is possible to adjust the actual number of sighted targets for the proportion of targets missed. Some
studies utilize two observers searching the same areas to estimate the proportion of individuals
missed and thereby eliminating the assumption that all individuals on the line have been observed.

Relationship to other software

A detailed comparison of Rdistance to other options for distance sampling analysis (e.g., Program
DISTANCE, R package Distance, and R package unmarked) is forthcoming. While some of the
functionality in Rdistance is not unique, our aim is to provide an easy-to-use, rigorous, and flexible
analysis option for distance-sampling data. We understand that beginning users often need software
that is both easy to use and easy to understand, and that advanced users often require greater flexi-
bility and customization. Our aim is to meet the demands of both user groups. Rdistance is under
active development, so please contact us with issues, feature requests, etc. through the package’s
GitHub website (https://github.com/tmcd82070/Rdistance).

Data sets

Rdistance contains four example data sets: two collected using line-transect methods (i.e., sparrowDetectionData
and sparrowSiteData) and two collected using point-transect (sometimes called a point count)
methods (i.e., thrasherDetectionData and thrasherSiteData).

These datasets demonstrate the type and format of input data required by Rdistance to estimate a
detection function and abundance from distance sampling data collected by surveying line transects
or point transects. They also allow the user to step through the tutorials described in the package
vignettes.

Rdistance requires only detection data to fit detection functions, assuming no covariates in the de-
tection function (see dfuncEstim). Both detection and site data are required to estimate abundance
or to include site-level covariates in the detection function (see abundEstim).

Resources

The best place to start learning about Rdistance is at the package’s GitHub Wiki, which hosts
several tutorial vignettes and FAQs (https://github.com/tmcd82070/Rdistance/wiki). Addi-
tionally, the examples in the help files for dfuncEstim, abundEstim, and autoDistSamp highlight
the package’s primary functionality.

A list of routines can be obtained by loading Rdistance and issuing help(package="Rdistance").

Author(s)

Main author and maintainer: Trent McDonald <trent@mcdonalddatasciences.com>

Coauthors: Ryan Nielson, Jason Carlisle, and Aidan McDonald

https://github.com/tmcd82070/Rdistance
https://github.com/tmcd82070/Rdistance/wiki

abundEstim 5

Contributors: Ben Augustine, James Griswald, Joel Reynolds, Pham Quang, Earl Becker, Aaron
Christ, Brook Russelland, Patrick McKann, Lacey Jeroue, Abigail Hoffman, Michael Kleinsasser,
and Ried Olson

See Also

Useful links:

• https://github.com/tmcd82070/Rdistance/wiki

• Report bugs at https://github.com/tmcd82070/Rdistance/issues

abundEstim Estimate abundance from distance-sampling data

Description

Estimate abundance (or density) given an estimated detection function and supplemental infor-
mation on observed group sizes, transect lengths, area surveyed, etc. Also computes confidence
intervals on abundance (or density) using a the bias corrected bootstrap method.

Usage

abundEstim(
dfunc,
detectionData,
siteData,
area = NULL,
singleSided = FALSE,
ci = 0.95,
R = 500,
lengthColumn = "length",
plot.bs = FALSE,
showProgress = TRUE,
control = RdistanceControls()

)

Arguments

dfunc An estimated ’dfunc’ object produced by dfuncEstim.

detectionData A data frame containing detection distances (either perpendicular for line-transect
or radial for point-transect designs), with one row per detected object or group.
This data frame must contain at least the following information:

• Detection Distances: A single column containing detection distances must
be specified on the left-hand side of formula. As of Rdistance version
3.0.0, the detection distances must have measurement units attached. At-
tach measurements units to distances using library(units);units()<-.
For example, library(units) followed by units(df$dist) <- "m" or

https://github.com/tmcd82070/Rdistance/wiki
https://github.com/tmcd82070/Rdistance/issues

6 abundEstim

units(df$dist) <- "ft" will work. Alternatively, df$dist <- units::set_units(df$dist,
"m") also works.

• Site IDs: The ID of the transect or point (i.e., the ’site’) where each object
or group was detected. The site ID column(s) (see arguments transectID
and pointID) must specify the site (transect or point) so that this data frame
can be merged with siteData.

• In a later release, Rdistance will allow detection-level covariates. When
that happens, detection-level covariates will appear in this data frame.

See example data set sparrowDetectionData. See also Input data frames be-
low for information on when detectionData and siteData are required inputs.

siteData A data.frame containing site (transect or point) IDs and any site level covari-
ates to include in the detection function. Every unique surveyed site (transect
or point) is represented on one row of this data set, whether or not targets were
sighted at the site. See arguments transectID and pointID for an explana-
tion of the way in which distance and site data frames are merged. See section
Relationship between data frames (transect and point ID’s) for additional
details.
See Data frame requirements for situations in which detectionData only,
detectionData and siteData, or neither are required.

area A scalar containing the total area of inference. Commonly, this is study area
size. If area is NULL (the default), area will be set to 1 square unit of the output
units and this produces abundance estimates equal density estimates. If area is
not NULL, it must have measurement units assigned by the units package. The
units on area must be convertible to squared output units. Units on area must
be two-dimensional. For example, if output units are "foo", units on area must
be convertible to "foo^2" by the units package. Units of "km^2", "cm^2", "ha",
"m^2", "acre", "mi^2", and many others are acceptable.

singleSided Logical scaler. If only one side of the transect was observed, set singleSided
= TRUE. If both sides of line-transects were observed, singleSided = FALSE.
Some surveys observe only one side of transect lines for a variety of logisti-
cal reasons. For example, some aerial line-transect surveys place observers on
only one side of the aircraft. This parameter effects only line-transects. When
singleSided = TRUE, surveyed area is halved and the density estimator’s de-
nominator (see Details) is (ESW)(L), not 2(ESW)(L).

ci A scalar indicating the confidence level of confidence intervals. Confidence
intervals are computed using a bias corrected bootstrap method. If ci = NULL,
confidence intervals are not computed.

R The number of bootstrap iterations to conduct when ci is not NULL.

lengthColumn Character string specifying the (single) column in siteData that contains tran-
sect lengths. This is ignored if pointSurvey = TRUE. This column must have
measurement units.

plot.bs A logical scalar indicating whether to plot individual bootstrap iterations.

showProgress A logical indicating whether to show a text-based progress bar during boot-
strapping. Default is TRUE. It is handy to shut off the progress bar if running this
within another function. Otherwise, it is handy to see progress of the bootstrap
iterations.

abundEstim 7

control A list containing optimization control parameters such as the maximum number
of iterations, tolerance, the optimizer to use, etc. See the RdistanceControls
function for explanation of each value, the defaults, and the requirements for
this list. See examples below for how to change controls.

Details

The abundance estimate for line-transect surveys (if no covariates are included in the detection
function and both sides of the transect were observed) is

N =
n(A)

2(ESW)(L)

where n is total number of sighted individuals (i.e., sum(dfunc$detections$groupSizes)), L is
the total length of surveyed transect (i.e., sum(siteData[,lengthColumn])), and ESW is effective
strip width computed from the estimated distance function (i.e., ESW(dfunc)). If only one side of
transects were observed, the "2" in the denominator is not present (or, replaced with a "1").

The abundance estimate for point transect surveys (if no covariates are included) is

N =
n(A)

π(ESR2)(P)

where n is total number of sighted individuals, P is the total number of surveyed points, and ESR is
effective search radius computed from the estimated distance function (i.e., ESR(dfunc)).

Setting plot.bs=FALSE and showProgress=FALSE suppresses all intermediate output.

Value

An ’abundance estimate’ object, which is a list of class c("abund", "dfunc"), containing all the
components of a "dfunc" object (see dfuncEstim), plus the following:

density Estimated density on the sampled area with units. The effectively sampled area
is 2*L*ESW (not 2*L*w.hi). Density has squared units of the requested out-
put units. Convert density to other units with units::set_units(x$density,
"<units>").

n.hat Estimated abundance on the study area (if area > 1) or estimated density on the
study area (if area = 1), without units.

n The number of detections (not individuals, unless all group sizes = 1) on non-NA
length transects used to compute density and abundance.

n.seen The total number of individuals seen on transects with non-NA length. Sum of
group sizes used to estimate density and abundance.

area Total area of inference in squared output units.

surveyedUnits The total length of sampled transect with units. This is the sum of the lengthColumn
column of siteData.

avg.group.size Average group size on transects with non-NA length transects.

rng.group.size Minimum and maximum groupsizes observed on non-NA length transects.

8 abundEstim

effDistance A vector containing effective sample distance. If covariates are not included,
length of this vector is 1 because effective sampling distance is constant over de-
tections. If covariates are included, this vector has length equal to the number of
detections (i.e., x$n). This vector was produced by a call to effectiveDistance()
with newdata set to NULL.

n.hat.ci A vector containing the lower and upper limits of the bias corrected bootstrap
confidence interval for abundance.

density.ci A vector containing the lower and upper limits of the bias corrected bootstrap
confidence interval for density, with units.

effDistance.ci A vector containing the lower and upper limits of the bias corrected bootstrap
confidence interval for average effective sampling distance.

B A data frame containing bootstrap values of coefficients, density, and effective
distances. Number of rows is always R, the requested number of bootstrap itera-
tions. If a particular iteration did not converge, the corresponding row in B is NA
(hence, use ’na.rm = TRUE’ when computing summaries). Columns 1 through
length(coef(dfunc)) contain bootstrap realizations of the distance function’s
coefficients. The second to last column contains bootstrap values of density
(with units). The last column of B contains bootstrap values of effective sam-
pling distance or radius (with units). If the distance function contains covariates,
the effective sampling distance column is the average effective distance over de-
tections used during the associated bootstrap iteration.

nItersConverged

The number of bootstrap iterations that converged.

alpha The (scalar) confidence level of the confidence interval for n.hat.

Bootstrap Confidence Intervals

The bootstrap confidence interval for abundance assumes that the fundamental units of replication
(lines or points, hereafter "sites") are independent. The bias corrected bootstrap method used here
resamples the units of replication (sites), refits the distance function, and estimates abundance using
the resampled counts and re-estimated distance function. The original data frames, detectionData
and siteData, are needed here for bootstrapping because they contain the transect and detection
information. If a double-observer data frame is included in dfunc, rows of the double-observer data
frame are re-sampled each bootstrap iteration.

This routine does not re-select the distance model fitted to resampled data. The model in the input
object is re-fitted every iteration.

By default, R = 500 iterations are performed, after which the bias corrected confidence intervals are
computed (Manly, 1997, section 3.4).

During bootstrap iterations, the distance function can fail to converge on the resampled data. An
iteration can fail to converge for a two reasons: (1) no detections on the iteration, and (2) bad
configuration of distances on the iteration which pushes parameters to their bounds. When an
iteration fails to produce a valid distance function, Rdistance simply skips the intration, effectively
ignoring these non-convergent iterations. If the proportion of non-convergent iterations is small
(less than 20 on abundance is probably valid. If the proportion of non-convergent iterations is not
small (exceeds 20 The print method (print.abund) is the routine that issues this warning. The
warning can be turned off by setting maxBSFailPropForWarning in the print method to 1.0, or

abundEstim 9

by modifying the code in RdistanceControls() to re-set the default threshold and storing the
modified function in your .GlobalEnv. Additional iterations may be needed to achieve an adequate
number. Check number of convergent iterations by counting non-NA rows in output data frame ’B’.

Missing Transect Lengths

Line transects: The transect length column of siteData can contain missing values. NA length
transects are equivalent to 0 [m] transects and do not count toward total surveyed units. NA length
transects are handy if some off-transect distance observations should be included when estimating
the distance function, but not when estimating abundance. To do this, include the "extra" distance
observations in the detection data frame, with valid site IDs, but set the length of those site IDs to
NA in the site data frame. Group sizes associated with NA length transects are dropped and not
counted toward density or abundance. Among other things, this allows estimation of abundance on
one study area using off-transect distance observations from another.

Point transects: Point transects do not have length. The "length" of point transects is the number of
points on the transect. Rdistance treats individual points as independent and bootstrap resampmles
them to estimate variance. To include distance obervations from some points but not the number
of targets seen, include a separate "length" column in the site data frame with NA for the "extra"
points. Like NA length line transects, NA "length" point transects are dropped from the count of
points and group sizes on these transects are dropped from the counts of targets. This allows users
to estimate their distance function on one set of observations while inflating counts from another
set of observations. A transect "length" column is not required for point transects. Values in the
lengthColumn do not matter except for NA (e.g., a column of 1’s mixed with NA’s is acceptable).

References

Manly, B.F.J. (1997) Randomization, bootstrap, and Monte-Carlo methods in biology, London:
Chapman and Hall.

Buckland, S.T., D.R. Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. (2001)
Introduction to distance sampling: estimating abundance of biological populations. Oxford Uni-
versity Press, Oxford, UK.

See Also

dfuncEstim, autoDistSamp.

Examples

Load example sparrow data (line transect survey type)
data(sparrowDetectionData)
data(sparrowSiteData)

Fit half-normal detection function
dfunc <- dfuncEstim(formula=dist ~ groupsize(groupsize)

, detectionData=sparrowDetectionData
, likelihood="halfnorm"
, w.hi=units::set_units(100, "m")
)

Estimate abundance given a detection function

10 AIC.dfunc

No variance on density or abundance estimated here
due to time constraints. Set ci=0.95 (or another value)
to estimate bootstrap variances on ESW, density, and abundance.

fit <- abundEstim(dfunc
, detectionData = sparrowDetectionData
, siteData = sparrowSiteData
, area = units::set_units(4105, "km^2")
, ci = NULL
)

AIC.dfunc AICc and related fit statistics for detection function objects

Description

Computes AICc, AIC, or BIC for estimated distance functions.

Usage

S3 method for class 'dfunc'
AIC(object, ..., criterion = "AICc")

Arguments

object An estimated detection function object. An estimated detection function object
has class ’dfunc’, and is usually produced by a call to dfuncEstim.

... Required for compatibility with the general AIC method. Any extra arguments
to this function are ignored.

criterion String specifying the criterion to compute. Either "AICc", "AIC", or "BIC".

Details

Regular Akaike’s information criterion (https://en.wikipedia.org/wiki/Akaike_information_
criterion) (AIC) is

AIC = LL+ 2p,

where LL is the maximized value of the log likelihood (the minimized value of the negative log
likelihood) and p is the number of coefficients estimated in the detection function. For dfunc
objects, AIC = obj$loglik + 2*length(coef(obj)).

A correction for small sample size, AICc, is

AICc = LL+ 2p+
2p(p+ 1)

n− p− 1
,

where n is sample size or number of detected groups for distance analyses. By default, this function
computes AICc. AICc converges quickly to AIC as n increases.

https://en.wikipedia.org/wiki/Akaike_information_criterion
https://en.wikipedia.org/wiki/Akaike_information_criterion

autoDistSamp 11

The Bayesian Information Criterion (BIC) is

BIC = LL+ log(n)p,

.

Value

A scalar. By default, the value of AICc for the estimated distance function obj.

References

Burnham, K. P., and D. R. Anderson, 2002. Model selection and multi-model inference: A practical
information-theoretic approach, Second ed. Springer-Verlag. ISBN 0-387-95364-7.

McQuarrie, A. D. R., and Tsai, C.-L., 1998. Regression and time series model selection. World
Scientific. ISBN 981023242X

See Also

coef, dfuncEstim

Examples

data(sparrowDetectionData)
dfunc <- dfuncEstim(dist~1,

detectionData=sparrowDetectionData,
w.hi=units::set_units(150, "m"))

Compute fit statistics
AIC(dfunc) # AICc
AIC(dfunc, criterion="AIC") # AIC
AIC(dfunc, criterion="BIC") # BIC

autoDistSamp Automated classical distance analysis

Description

Perform automated classical detection function selection and estimation of abundance.

Usage

autoDistSamp(
formula,
detectionData,
siteData,
w.lo = 0,
w.hi = NULL,
likelihoods = c("halfnorm", "hazrate", "uniform", "negexp", "Gamma"),

12 autoDistSamp

series = c("cosine", "hermite", "simple"),
expansions = 0:3,
pointSurvey = FALSE,
warn = TRUE,
area = NULL,
ci = 0.95,
R = 500,
plot.bs = FALSE,
showProgress = TRUE,
plot = TRUE,
criterion = "AICc",
...

)

Arguments

formula This parameter is passed to dfuncEstim. See dfuncEstim documentation for
definition.

detectionData This parameter is passed to dfuncEstim and abundEstim. See abundEstim
documentation for definition.

siteData This parameter is passed to abundEstim. See abundEstim documentation for
definition.

w.lo This parameter is passed to dfuncEstim. See dfuncEstim documentation for
definition.

w.hi This parameter is passed to dfuncEstim. See dfuncEstim documentation for
definition.

likelihoods Vector of strings specifying the likelihoods to consider during model selec-
tion. Valid values at present are "uniform", "halfnorm", "hazrate", "negexp",
and "Gamma". See Details for the models this routine considers.

series Vector of series types to consider during model selection. Valid values are ’sim-
ple’, ’hermite’, and ’cosine’. See Details for the models this routine considers.

expansions Vector of the number of expansion terms to consider during model selection.
Valid values are 0 through 3. See Details for the models this routine considers.
Note, expansion terms are not currently allowed in models with covariates.

pointSurvey This parameter is passed to dfuncEstim. See dfuncEstim documentation for
definition.

warn This parameter is passed to dfuncEstim. dfuncEstim documentation for defi-
nition.

area This parameter is passed to abundEstim. See abundEstim documentation for
definition.

ci This parameter is passed to abundEstim. See abundEstim documentation for
definition.

R This parameter is passed to abundEstim. See abundEstim documentation for
definition.

autoDistSamp 13

plot.bs Logical for whether to plot bootstrap iterations after the top model has been
selected and during final estimation of confidence intervals. This parameter is
passed unchanged to abundEstim. See abundEstim help for additional infor-
mation.

showProgress Logical for whether to suppress intermediate output. If showProgress=TRUE, a
table of model fitting results appears in the console as they are estimated, and
a progress bar shows progress through the bootstrap iterations at the end. If
showProgress=FALSE, all intermediate output is suppressed which is handy for
programming and simulations.

plot Logical scalar specifying whether to plot models during model selection. If
TRUE, a histogram with fitted distance function is plotted for every fitted model.
The function pauses between each plot and prompts the user for whether they
want to continue or not. For completely automated estimation, set plot = FALSE.

criterion A string specifying the criterion to use when assessing model fit. The best fit-
ting model from this routine is the one with lowest value of this fit criterion.
This must be one of "AICc" (the default), "AIC", or "BIC". See AIC.dfunc for
formulas.

... Additional parameters passed to dfuncEstim, which in turn are passed to F.gx.estim.
These include x.scl, g.x.scl, and observer for estimating double observer
probabilities.

Details

During model selection, each series and number of expansions is crossed with each of the like-
lihoods. For example, if likelihoods has 3 elements, series has 2 elements, and expansions
has 4 elements, the total number of models fitted is 3 (likelihoods) * 2 (series) * 4 (expansions)
= 24 models. The default specification fits 41 detection functions from the "halfnorm", "hazrate",
"uniform", "negexp", and "Gamma" likelihoods (note that Gamma does not currently implement
expansions, see Gamma.like). Note, expansion terms are not currently allowed in models with co-
variates. The model with lowest AIC is selected as ’best’, and estimation of abundance proceeds
using that model.

Suppress all intermediate output using plot.bs=FALSE, showProgress=FALSE, and plot=FALSE.

Value

If bySite==FALSE, an ’abundance estimate’ object is returned. See abundEstim and dfuncEstim
for an explanation of components. Returned abundance estimates are based on the best fitting dis-
tance function among those fitted. A fit table, sorted by the criterion, is returned as component
$fitTable. The fit table component contains columns like (likelihood), series, expansions,
converge (0=converged,1=not), scale (1=passed scale check,0=did not pass), and aic (the crite-
rion used).

If bySite==TRUE, a data frame containing site-level abundance based on the best-fitting detection
function is returned. See abundEstim for description of columns in the data frame. The best-fitting
likelihood form, series, and number of expansions are returned as attributes of the data frame (e.g.,
best-fitting likelihood is attr(out,"like.form")).

14 coef.dfunc

See Also

dfuncEstim, abundEstim.

Examples

Load example sparrow data (line transect survey type)
data(sparrowDetectionData)
data(sparrowSiteData)

Automate fitting multiple detection functions, and estimate abundance
(density per ha in this case), given the 'best' detection function
autoDistSamp(formula = dist ~ groupsize(groupsize)

, detectionData = sparrowDetectionData
, siteData = sparrowSiteData
, likelihood = c("halfnorm", "hazrate")
, w.hi = units::set_units(100, "m")
, expansions = 0
, area = units::set_units(4105, "km^2")
, ci = NULL
, plot = FALSE
)

coef.dfunc Coefficients of an estimated detection function

Description

Extract the coefficients and estimated parameters (if any) from a estimated detection function object.

Usage

S3 method for class 'dfunc'
coef(object, ...)

Arguments

object An estimated distance function object. An estimated distance function object
has class ’dfunc’, and is usually produced by a call to dfuncEstim.

... Required for compatibility with the general coef method. Any extra arguments
to this function are ignored.

Details

This is an extractor function for the parameters of an estimated detection function. This function is
equivalent to obj$parameters for classical detection functions.

colorize 15

Value

The estimated parameter vector for the detection function. Length and interpretation of values in
this vector vary depending on the form of the detection function and expansion terms.

See Also

AIC, dfuncEstim

Examples

Load example sparrow data (line transect survey type)
data(sparrowDetectionData)

Fit half-normal detection function
dfunc <- dfuncEstim(formula=dist~1

, detectionData=sparrowDetectionData)

Print results
dfunc

Extract the coefficient(s)
coef(dfunc)

colorize colorize - Add color to result if terminal accepts it

Description

Add ANSI color to a string using the crayon package, if the R environment accepts color. This
function is needed because of the need to determine whether output can be colorized. This determi-
nation is left up to crayon::has_color().

In addition, for Rdistance results, we want to only colorize numbers, not the reporting units. Every-
thing between the last set of square brackets ([...]) is NOT colorized.

Usage

colorize(STR, col = NULL, bg = NULL)

Arguments

STR The string to colorize.
col A string specifying the desired foreground color. This is passed straight to

crayon::style and so must be recognized as one of the 8 base crayon col-
ors. i.e., "black", "red", "green", "yellow", "blue", "magenta", "cyan", "white",
and "silver" (silver = gray). By default, numbers are styled in "green".

bg A string specifying the desired background color. Must be one of "bgBlack",
"bgRed", "bgGreen", "bgYellow", "bgBlue" "bgMagenta", "bgCyan", or "bg-
White". By default, no background is applied.

16 cosine.expansion

Value

If color is not allowed in the terminal, the input string is returned unperturbed. If color is allowed,
the input string is returned with color and background ANSI code surrounding the initial part of the
string from character 1 to the character before the [in the last pair of [].

See Also

crayon::style

cosine.expansion calculation of cosine expansion for detection function likelihoods

Description

Computes the cosine expansion terms used in the likelihood of a distance analysis. More generally,
will compute a cosine expansion of any numeric vector.

Usage

cosine.expansion(x, expansions)

Arguments

x In a distance analysis, x is a numeric vector of the proportion of a strip transect’s
half-width at which a group of individuals were sighted. If w is the strip transect
half-width or maximum sighting distance, and d is the perpendicular off-transect
distance to a sighted group (d ≤ w), x is usually d/w. More generally, x is a
vector of numeric values

expansions A scalar specifying the number of expansion terms to compute. Must be one of
the integers 1, 2, 3, 4, or 5.

Details

There are, in general, several expansions that can be called cosine. The cosine expansion used here
is:

• First term:
h1(x) = cos(2πx),

• Second term:
h2(x) = cos(3πx),

• Third term:
h3(x) = cos(4πx),

• Fourth term:
h4(x) = cos(5πx),

• Fifth term:
h5(x) = cos(6πx),

The maximum number of expansion terms computed is 5.

dfuncEstim 17

Value

A matrix of size length(x) X expansions. The columns of this matrix are the cosine expansions
of x. Column 1 is the first expansion term of x, column 2 is the second expansion term of x, and so
on up to expansions.

See Also

dfuncEstim, hermite.expansion, simple.expansion, and the discussion of user defined likeli-
hoods in dfuncEstim.

Examples

set.seed(33328)
x <- rnorm(1000) * 100
x <- x[0 < x & x < 100]
cos.expn <- cosine.expansion(x, 5)

dfuncEstim Estimate a detection function from distance-sampling data

Description

Fit a specific detection function to off-transect or off-point (radial) distances using maximum like-
lihood. Distance functions are fitted to individual distance observations, not histogram bin heights,
despite plot methods that draw histogram bars.

Usage

dfuncEstim(
formula,
detectionData,
siteData,
likelihood = "halfnorm",
pointSurvey = FALSE,
w.lo = units::set_units(0, "m"),
w.hi = NULL,
expansions = 0,
series = "cosine",
x.scl = units::set_units(0, "m"),
g.x.scl = 1,
observer = "both",
warn = TRUE,
transectID = NULL,
pointID = "point",
outputUnits = NULL,
control = RdistanceControls()

)

18 dfuncEstim

Arguments

formula A standard formula object (e.g., dist ~ 1, dist ~ covar1 + covar2). The left-
hand side (before ~) is the name of the vector containing distances (off-transect
or radial). The right-hand side (after ~) contains the names of covariate vectors
to fit in the detection function. Covariates can be either detection level and
appear in detectionData or transect level and appear in siteData. Regular R
scoping rules apply.
Group Sizes: Non-unity group sizes are specified using groupsize() in the for-
mula. That is, when group sizes are not all 1, they must be entered as a column
in detectionData and specified using groupsize() as part of formula. For
example, d ~ habitat + groupsize(number) specifies that distances appear in
variable d, one covariate named habitat is to be fitted, and column number con-
tains the number of individuals associated with each detection. If group sizes are
not specified, all group sizes are assumed to be 1.

detectionData A data frame containing detection distances (either perpendicular for line-transect
or radial for point-transect designs), with one row per detected object or group.
This data frame must contain at least the following information:

• Detection Distances: A single column containing detection distances must
be specified on the left-hand side of formula. As of Rdistance version
3.0.0, the detection distances must have measurement units attached. At-
tach measurements units to distances using library(units);units()<-.
For example, library(units) followed by units(df$dist) <- "m" or
units(df$dist) <- "ft" will work. Alternatively, df$dist <- units::set_units(df$dist,
"m") also works.

• Site IDs: The ID of the transect or point (i.e., the ’site’) where each object
or group was detected. The site ID column(s) (see arguments transectID
and pointID) must specify the site (transect or point) so that this data frame
can be merged with siteData.

• In a later release, Rdistance will allow detection-level covariates. When
that happens, detection-level covariates will appear in this data frame.

See example data set sparrowDetectionData. See also Input data frames be-
low for information on when detectionData and siteData are required inputs.

siteData A data.frame containing site (transect or point) IDs and any site level covari-
ates to include in the detection function. Every unique surveyed site (transect
or point) is represented on one row of this data set, whether or not targets were
sighted at the site. See arguments transectID and pointID for an explana-
tion of the way in which distance and site data frames are merged. See section
Relationship between data frames (transect and point ID’s) for additional
details.
See Data frame requirements for situations in which detectionData only,
detectionData and siteData, or neither are required.

likelihood String specifying the likelihood to fit. Built-in likelihoods at present are "uni-
form", "halfnorm", "hazrate", "negexp", and "Gamma". See vignette for a way
to use user-define likelihoods.

pointSurvey A logical scalar specifying whether input data come from point-transect surveys
(TRUE), or line-transect surveys (FALSE).

dfuncEstim 19

w.lo Lower or left-truncation limit of the distances in distance data. This is the min-
imum possible off-transect distance. Default is 0. If w.lo is greater than 0,
it must be assigned measurement units using units(w.lo) <- "<units>" or
w.lo <- units::set_units(w.lo, "<units>"). See examples in the help for
set_units.

w.hi Upper or right-truncation limit of the distances in dist. This is the maxi-
mum off-transect distance that could be observed. If unspecified (i.e., NULL),
right-truncation is set to the maximum of the observed distances. If w.hi is
specified, it must have associated measurement units. Assign measurement
units using units(w.hi) <- "<units>" or w.hi <- units::set_units(w.hi,
"<units>"). See examples in the help for set_units.

expansions A scalar specifying the number of terms in series to compute. Depending on
the series, this could be 0 through 5. The default of 0 equates to no expansion
terms of any type. No expansion terms are allowed (i.e., expansions is forced
to 0) if covariates are present in the detection function (i.e., right-hand side of
formula includes something other than 1).

series If expansions > 0, this string specifies the type of expansion to use. Valid
values at present are ’simple’, ’hermite’, and ’cosine’.

x.scl The x coordinate (a distance) at which to scale the sightability function to g.x.scl,
or the string "max". When x.scl is specified (i.e., not 0 or "max"), it must have
measurement units assigned using either library(units);units(x.scl) <-
'<units>' or x.scl <- units::set_units(x.scl, <units>). See units::valid_udunits()
for valid symbolic units. See Details for more on scaling the sightability func-
tion.

g.x.scl Height of the distance function at coordinate x. The distance function will be
scaled so that g(x.scl) = g.x.scl. If g.x.scl is not a data frame, it must be a
numeric value (vector of length 1) between 0 and 1. See Details.

observer A numeric scalar or text string specifying whether observer 1 or observer 2 or
both were full-time observers. This parameter dictates which set of observations
form the denominator of a double observer system. If, for example, observer 2
was a data recorder and part-time observer, or if observer 2 was the pilot, set
observer = 1. If observer = 1, observations by observer 1 not seen by observer
2 are ignored. The estimate of detection in this case is the ratio of number of
targets seen by both observers to the number seen by both plus the number seen
by just observer 2. If observer = "both", the computation goes both directions.

warn A logical scalar specifying whether to issue an R warning if the estimation did
not converge or if one or more parameter estimates are at their boundaries. For
estimation, warn should generally be left at its default value of TRUE. When com-
puting bootstrap confidence intervals, setting warn = FALSE turns off annoying
warnings when an iteration does not converge. Regardless of warn, after com-
pletion all messages about convergence and boundary conditions are printed by
print.dfunc, print.abund, and plot.dfunc.

transectID A character vector naming the transect ID column(s) in detectionData and
siteData. If transects are not identified in columns named ’siteID’ (the default
for both data frames), you need to specify which column(s) uniquely identify
transects. transectID can have length greater than 1, in which case unique
transects are identified by the composite columns.

20 dfuncEstim

pointID When point-transects are used, this is the ID of points on a transect. When
pointSurvey=TRUE, the combination of transectID and pointID specify
unique sampling sites. See Input data frames.
If single points are surveyed, meaning surveyed points were not grouped into
transects, each ’transect’ consists of one point. In this case, set transectID
equal to the point’s ID and set pointID equal to 1 for all points.

outputUnits A string giving the symbolic measurment units that results should be reported in.
Any distance measurement unit in units::valid_udunits() will work. The
strings for common distance symbolic units are: "m" for meters, "ft" for feet,
"cm" for centimeters, "mm" for millimeters, "mi" for miles, "nmile" for nautical
miles ("nm" is nano meters), "in" for inches, "yd" for yards, "km" for kilo-
meters, "fathom" for fathoms, "chains" for chains, and "furlong" for furlongs.
If outputUnits is unspecified (NULL), output units are the same as distance
measurements units in data.

control A list containing optimization control parameters such as the maximum number
of iterations, tolerance, the optimizer to use, etc. See the RdistanceControls
function for explanation of each value, the defaults, and the requirements for
this list. See examples below for how to change controls.

Value

An object of class ’dfunc’. Objects of class ’dfunc’ are lists containing the following components:

parameters The vector of estimated parameter values. Length of this vector for built-in
likelihoods is one (for the function’s parameter) plus the number of expansion
terms plus one if the likelihood is either ’hazrate’ or ’uniform’ (hazrate and
uniform have two parameters).

varcovar The variance-covariance matrix for coefficients of the distance function, esti-
mated by the inverse of the Hessian of the fit evaluated at the estimates. There is
no guarantee this matrix is positive-definite and should be viewed with caution.
Error estimates derived from bootstrapping are generally more reliable.

loglik The maximized value of the log likelihood (more specifically, the minimized
value of the negative log likelihood).

convergence The convergence code. This code is returned by optim. Values other than 0
indicate suspect convergence.

like.form The name of the likelihood. This is the value of the argument likelihood.

w.lo Left-truncation value used during the fit.

w.hi Right-truncation value used during the fit.

detections A data frame of detections within the strip or circle used in the fit. Column ’dist’
contains the observed distances. Column ’groupSize’ contains group sizes asso-
ciated with the values of ’dist’. Group sizes are only used in abundEstim. This
data frame contains only distances between w.lo and w.hi. Another component
of the returned object, i.e., model.frame contains all observations in the input
data, including those outside the strip.

covars Either NULL if no covariates are included in the detection function, or a model.matrix
containing the covariates used in the fit. Factors in in the model.matrix version

dfuncEstim 21

have been expanded into 0-1 indicator variables based on R contrasts in effect at
the time of the call. Only covariates associated with distances inside the strip or
circle are included.

model.frame A model.frame object containing observed distances (the ’response’), covari-
ates specified in the formula, and group sizes if they were specified. If speci-
fied, the name of the group size column is "offset(-variable-)", not "groupsize(-
variable-)", because internally it is easier to treat group sizes as an offset in the
model. This component is a proper model.frame and contains both ’terms’ and
’contrasts’ attributes.

siteID.cols A vector containing the transect ID column names in detectionData and siteData.
Transect IDs can be a composite of two or more columns and hence this com-
ponent can have length greater than 1.

expansions The number of expansion terms used during estimation.

series The type of expansion used during estimation.

call The original call of this function.

call.x.scl The input or user requested distance at which the distance function is scaled.

call.g.x.scl The input value specifying the height of the distance function at a distance of
call.x.scl.

call.observer The value of input parameter observer. The input observer parameter is only
applicable when g.x.scl is a data frame.

fit The fitted object returned by optim. See documentation for optim.

factor.names The names of any factors in formula.

pointSurvey The input value of pointSurvey. This is TRUE if distances are radial from a
point. FALSE if distances are perpendicular off-transect.

formula The formula specified for the detection function.

control A list containing values of the ’control’ parameters set by RdistanceControls.

outputUnits The measurement units used for output. All distance measurements are con-
verted to these units internally.

x.scl The actual distance at which the distance function is scaled to some value. i.e.,
this is the actual x at which g(x) = g.x.scl. Note that call.x.scl = x.scl
unless call.x.scl == "max", in which case x.scl is the distance at which g()
is maximized.

g.x.scl The actual height of the distance function at a distance of x.scl. Note that
g.x.scl = call.g.x.scl unless call.g.x.scl is a multiple observer data
frame, in which case g.x.scl is the actual height of the distance function at
x.scl computed from the multiple observer data frame.

Transect types

Rdistance accommodates two kinds of transects: continuous and point. On continuous transects
detections can occur at any point along the route, and these are line-transects. On point transects
detections can only occur at a series of stops (points), and these are point-transects. Transects are the
basic sampling unit in both cases. Columns named in transectID are sufficient to specify unique
line-transects. The combination of transectID and pointID specify unique sampling locations
along point-transects. See Input data frames below for more detail.

22 dfuncEstim

Input data frames

To save space and to easily specify sites without detections, all site ID’s, regardless of whether a
detection occurred there, and site level covariates are stored in the siteData data frame. Detection
distances and group sizes are measured at the detection level and are stored in the detectionData
data frame.

Data frame requirements: The following explains conditions under which various combina-
tions of the input data frames are required.

1. Detection data and site data both required:
Both detectionData and siteData are required if site level covariates are specified on
the right-hand side of formula. Detection level covariates are not currently allowed. Both
detectionData and siteData data frames are required to estimate abundance later in abundEstim.

2. Detection data only required:
detectionData only is required when covariates are not included in the distance func-
tion (i.e., the right-hand side of formula is "~1" or "~groupsize(groupSize)"). Note that
dfuncEstim does not need to know transect IDs (or group sizes) in order to estimate a
distance function; but, group sizes and transect IDs are stored and used for later use in
abundEstim. Both the detectionData and siteData data frames are required in abundEstim.

3. Neither detection data nor site data required
Neither detectionData nor siteData are required if all variables specified in formula are
within the scope of dfuncEstim (e.g., in the global working environment) and abundance
estimates are not required. Regular R scoping rules apply when the call to dfuncEstim is
embedded in a function. This case will produce distance functions only. Abundance cannot
later be estimated because transects and transect lengths cannot be specified outside of a data
frame. If abundance will be estimated, use either case 1 or 2.

Relationship between data frames (transect and point ID’s): The input data frames, detectionData
and siteData, must be merge-able on unique sites. For line-transects, site ID’s specify transects
or routes and are unique values of the transectID column in siteData. In this case, the follow-
ing merge must work: merge(detectionData,siteData,by=transectID).
For point-transects, site ID’s specify individual points and are unique values of the combination
paste(transectID,pointID). In this case, the following merge must work: merge(detectionData,siteData,by=c(transectID,
pointID).
By default, transects are unique combinations of the common variables in the detectionData and
siteData data frames if both data frames are specified (i.e., unique values of intersect(names(detectionData),
names(siteData))). If siteData is not specified and transectID is not given, transects are as-
sumed to be identified in a column named siteID in detectionData.
Either way (i.e., either transectID = "siteID" or specified as something else), the column(s)
containing transect ID’s must be correct here if abundance is to be estimated later. Routine
abundEstim requires transect ID’s for bootstrapping because it resamples unique values of the
composite transect ID column(s). abundEstim uses the value of transectID specified here and
hence users cannot change transect ID’s between calls to dfuncEstim and abundEstim and all
transectID columns must be present in both data frames even though they may not be used until
later.
An error occurs if both detectionData and siteData are specified but no common columns ex-
ist. Duplicate transectID values are not allowed in siteData but are allowed in detectionData
because multiple detections can occur on a single transect or at a single site. If the same site

dfuncEstim 23

is surveyed in multiple years, specify another level of transect ID; for example, transectID =
c("year","transectID").

Measurement Units

As of Rdistance version 3.0.0, measurement units are require on all distances. This includes
off-transect distances, radial distances, truncation distances (w.lo and w.hi), transect lengths, and
study size area. In dfuncEstim, units are required on the following: detectionData$dist; w.lo
(unless it is zero); w.hi (unless it is NULL); and x.scl. In abundEstim, units are required on
siteData$length and area. All units are 1-dimensional except those on area, which are 2-
dimensional.

Requiring units ensures that internal calculations and results (e.g., ESW and abundance) are correct
and that output units are clear. Input distances can have variable units. For example, input distances
can be in specified in "m", w.hi in "in", and w.lo in "km". Internally, all distances are converted to
the units specified by outputUnits (or the units of input distances if outputUnits is NULL), and
all output is reported in units of outputUnits.

Measurement units can be assigned using units()<- after attaching the units package or with x <-
units::set_units(x, "<units>"). See units::valid_udunits() for a list of valid symbolic
units.

If measurements are truly unit-less, or measurement units are unknown, set RdistanceControls(requireUnits
= FALSE). This suppresses all unit checks and conversions. Users are on their own to make sure in-
puts are scaled correctly and that output units are known.

References

Buckland, S.T., D.R. Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. (2001)
Introduction to distance sampling: estimating abundance of biological populations. Oxford Uni-
versity Press, Oxford, UK.

See Also

abundEstim, autoDistSamp. Likelihood-specific help files (e.g., halfnorm.like). See package
vignettes for additional options.

Examples

Load example sparrow data (line transect survey type)
data(sparrowDetectionData)

dfunc <- dfuncEstim(formula = dist ~ 1
, detectionData = sparrowDetectionData)

dfunc
plot(dfunc)

24 dfuncSmu

dfuncSmu Estimate a non-parametric smooth detection function from distance-
sampling data

Description

Estimates a smooth detection function for line-transect perpendicular distances or point-transect
radial distances.

Usage

dfuncSmu(
formula,
detectionData,
siteData,
bw = "SJ-dpi",
adjust = 1,
kernel = "gaussian",
pointSurvey = FALSE,
w.lo = units::set_units(0, "m"),
w.hi = NULL,
x.scl = "max",
g.x.scl = 1,
observer = "both",
warn = TRUE,
transectID = NULL,
pointID = "point",
outputUnits = NULL,
length = "length",
control = RdistanceControls()

)

Arguments

formula A formula object (e.g., dist ~ 1). The left-hand side (before ~) is the name
of the vector containing distances (perpendicular or radial). The right-hand side
(after ~) must be the intercept-only model as Rdistance does not currently allow
covariates in smoothed distance functions. If names in formula do not appear
in detectionData, the normal scoping rules for model fitting routines (e.g., lm
and glm) apply.

detectionData A data frame containing detection distances (either perpendicular for line-transect
or radial for point-transect designs), with one row per detected object or group.
This data frame must contain at least the following information:

• Detection Distances: A single column containing detection distances must
be specified on the left-hand side of formula.

dfuncSmu 25

• Site IDs: The ID of the transect or point (i.e., the ’site’) where each object
or group was detected. The site ID column(s) (see argument siteID) must
specify the site (transect or point) so that this data frame can be merged
with siteData.

Optionally, this data frame can contain the following variables:

• Group Sizes: The number of individuals in the group associated with each
detection. If unspecified, Rdistance assumes all detections are of single
individuals (i.e., all group sizes are 1).

• When Rdistance allows detection-level covariates in some version after
2.1.1, detection-level covariates will appear in this data frame.

See example data set sparrowDetectionData). See also Input data frames
below for information on when detectionData and siteData are required in-
puts.

siteData A data.frame containing site (transect or point) IDs and any site level covariates
to include in the detection function. Every unique surveyed site (transect or
point) is represented on one row of this data set, whether or not targets were
sighted at the site. See arguments transectID and pointID for an explanation
of site and transect ID’s.
If sites are transects, this data frame must also contain transect length. By de-
fault, transect length is assumed to be in column ’length’ but can be specified
using argument length.
The total number of sites surveyed is nrow(siteData). Duplicate site-level IDs
are not allowed in siteData.
See Input data frames for when detectionData and siteData are required
inputs.

bw Bandwidth of the smooth, which controls smoothness. Smoothing is done by
stats::density, and bw is passed straight to it’s bw argument. bw can be nu-
meric, in which case it is the standard deviation of the Gaussian smoothing ker-
nel. Or, bw can be a character string specifying the bandwidth selection rule.
Valid character string values of bw are the following:

• "nrd0" : Silverman’s ’rule-of-thumb’ equal to 0.9s
1.34n−0.2 , where s is the min-

imum of standard deviation of the distances and the interquartile range. See
bw.nrd0.

• "nrd" : The more common ’rule-of-thumb’ variation given by Scott (1992).
This rule uses 1.06 in the denominator of the "nrd0" bandwidth. See bw.nrd

• "bcv" : The biased cross-validation method. See bcv.
• "ucv" : The unbiased cross-validation method. See ucv.
• "SJ" or "SJ-ste" : The ’solve-the-equation’ bandwidth of Sheather & Jones

(1991). See bw.SJ or width.SJ.
• "SJ-dpi" (default) : The ’direct-plug-in’ bandwidth of Sheather & Jones

(1991). See bw.SJ or width.SJ.

adjust Bandwidth adjustment for the amount of smooth. Smoothing is done by density,
and this parameter is passed straight to it’s adjust argument. In stats::density,
the bandwidth used is actually adjust*bw, and inclusion of this parameters
makes it easier to specify values like ’half the default’ bandwidth.

26 dfuncSmu

kernel Character string specifying the smoothing kernel function. This parameters is
passed unmodified to stats::density. Valid values are:

• "gaussian" : Gaussian (normal) kernel, the default
• "rectangular" : Uniform or flat kernel
• "triangular" : Equilateral triangular kernel
• "epanechnikov" : the Epanechnikov kernel
• "biweight" : the biweight kernel
• "cosine" : the S version of the cosine kernel
• "optcosine" : the optimal cosine kernel which is the usual one reported in

the literature

Values of kernel may be abbreviated to the first letter of each string. The nu-
meric value of bw used in the smooth is stored in the $fit component of the
returned object (i.e., in returnedfitbw).

pointSurvey A logical scalar specifying whether input data come from point-transect surveys
(TRUE), or line-transect surveys (FALSE). Point surveys (TRUE) have not been
implemented yet.

w.lo Lower or left-truncation limit of the distances in distance data. This is the mini-
mum possible off-transect distance. Default is 0.

w.hi Upper or right-truncation limit of the distances in dist. This is the maximum
off-transect distance that could be observed. If left unspecified (i.e., at the de-
fault of NULL), right-truncation is set to the maximum of the observed dis-
tances.

x.scl This parameter is passed to F.gx.estim. See F.gx.estim documentation for
definition.

g.x.scl This parameter is passed to F.gx.estim. See F.gx.estim documentation for
definition.

observer This parameter is passed to F.gx.estim. See F.gx.estim documentation for
definition.

warn A logical scalar specifying whether to issue an R warning if the estimation did
not converge or if one or more parameter estimates are at their boundaries. For
estimation, warn should generally be left at its default value of TRUE. When
computing bootstrap confidence intervals, setting warn = FALSE turns off an-
noying warnings when an iteration does not converge. Regardless of warn, mes-
sages about convergence and boundary conditions are printed by print.dfunc,
print.abund, and plot.dfunc, so there should be little harm in setting warn =
FALSE.

transectID A character vector naming the transect ID column(s) in detectionData and
siteData. Transects can be the basic sampling unit (when pointSurvey=FALSE)
or contain multiple sampling units (e.g., when pointSurvey=TRUE). For line-
transects, the transectID column(s) alone is sufficient to specify unique sample
sites. For point-transects, the amalgamation of transectID and pointID spec-
ify unique sampling sites. See Input data frames.

pointID When point-transects are used, this is the ID of points on a transect. When
pointSurvey=TRUE, the amalgamation of transectID and pointID specify
unique sampling sites. See Input data frames.

dfuncSmu 27

If single points are surveyed, meaning surveyed points were not grouped into
transects, each ’transect’ consists of one point. In this case, set transectID
equal to the point’s ID and set pointID equal to 1 for all points.

outputUnits A string giving the symbolic measurment units that results should be reported in.
Any distance measurement unit in units::valid_udunits() will work. The
strings for common distance symbolic units are: "m" for meters, "ft" for feet,
"cm" for centimeters, "mm" for millimeters, "mi" for miles, "nmile" for nautical
miles ("nm" is nano meters), "in" for inches, "yd" for yards, "km" for kilo-
meters, "fathom" for fathoms, "chains" for chains, and "furlong" for furlongs.
If outputUnits is unspecified (NULL), output units are the same as distance
measurements units in data.

length Character string specifying the (single) column in siteData that contains tran-
sect length. This is ignored if pointSurvey = TRUE.

control A list containing optimization control parameters such as the maximum number
of iterations, tolerance, the optimizer to use, etc. See the RdistanceControls
function for explanation of each value, the defaults, and the requirements for
this list. See examples below for how to change controls.

Details

Distances are reflected about w.lo before being passed to density. Distances exactly equal to w.lo
are not reflected. Reflection around w.lo greatly improves performance of the kernel methods near
the w.lo boundary where substantial non-zero probability of sighting typically exists.

Value

An object of class ’dfunc’. Objects of class ’dfunc’ are lists containing the following components:

parameters A data frame containing the $x and $y components of the smooth. $x is a vector
of length 512 (default for density) evenly spaced points between w.lo and
w.hi.

loglik The value of the log likelihood. Specifically, the sum of the negative log heights
of the smooth at observed distances, after the smoothed function has been scaled
to integrate to one.

w.lo Left-truncation value used during the fit.

w.hi Right-truncation value used during the fit.

dist The input vector of observed distances.

covars NULL. Covariates are not allowed in the smoothed distance function (yet).

call The original call of this function.

call.x.scl The distance at which the distance function is scaled. This is the x at which g(x)
= g.x.scl. Normally, call.x.scl = 0.

call.g.x.scl The value of the distance function at distance call.x.scl. Normally, call.g.x.scl
= 1.

call.observer The value of input parameter observer.

28 dfuncSmu

fit The smoothed object returned by stats::density. All information returned
by stats::density is preserved, and in particular the numeric value of the
bandwidth used during the smooth is returned in fit$bw

pointSurvey The input value of pointSurvey. This is TRUE if distances are radial from a
point. FALSE if distances are perpendicular off-transect.

formula The formula specified for the detection function.

Input data frames

To save space and to easily specify sites without detections, all site ID’s, regardless whether a
detection occurred there, and site level covariates are stored in the siteData data frame. Detection
distances and group sizes are measured at the detection level and are stored in the detectionData
data frame.

Data frame requirements: The following explains conditions under which various combina-
tions of the input data frames are required.

1. Detection data and site data both required:
Both detectionData and siteData are required if site level covariates are specified on the
right-hand side of formula. Detection level covariates are not currently allowed.

2. Detection data only required:
The detectionData data frame alone can be specified if no covariates are included in the dis-
tance function (i.e., right-hand side of formula is "~1"). Note that this routine (dfuncEstim)
does not need to know about sites where zero targets were detected, hence siteData can be
missing when no covariates are involved.

3. Neither detection data nor site data required
Neither detectionData nor siteData are required if all variables specified in formula are
within the scope of this routine (e.g., in the global working environment). Scoping rules here
work the same as for other modeling routines in R such as lm and glm. Like other modeling
routines, it is possible to mix and match the location of variables in the model. Some variables
can be in the .GlobalEnv while others are in either detectionData or siteData.

Relationship between data frames (transect and point ID’s): The input data frames, detectionData
and siteData, must be merge-able on unique sites. For line-transects, site ID’s (i.e., transect ID’s)
are unique values of the transectID column in siteData. In this case, the following merge must
work: merge(detectionData,siteData,by=transectID). For point-transects, site ID’s (i.e.,
point ID’s) are unique values of the combination paste(transectID,pointID). In this case, the
following merge must work: merge(detectionData,siteData,by=c(transectID, pointID).
By default,transectID and pointID are NULL and the merge is done on all common columns.
That is, when transectID is NULL, this routine assumes unique transects are specified by unique
combinations of the common variables (i.e., unique values of intersect(names(detectionData),
names(siteData))).
An error occurs if there are no common column names between detectionData and siteData.
Duplicate site IDs are not allowed in siteData. If the same site is surveyed in multiple years,
specify another transect ID column (e.g., transectID = c("year","transectID")). Duplicate
site ID’s are allowed in detectionData.
To help explain the relationship between data frames, bear in mind that during bootstrap estima-
tion of variance in abundEstim, unique transects (i.e., unique values of the transect ID column(s)),
not detections or points, are resampled with replacement.

EDR 29

References

Buckland, S.T., D.R. Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. (2001)
Introduction to distance sampling: estimating abundance of biological populations. Oxford Uni-
versity Press, Oxford, UK.

Scott, D. W. (1992) Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley.

Sheather, S. J. and Jones, M. C. (1991) A reliable data-based bandwidth selection method for kernel
density estimation. Journal of the Royal Statistical Society series B, 53, 683-690.

Silverman, B. W. (1986) Density Estimation. London: Chapman and Hall.

See Also

abundEstim, autoDistSamp, dfuncEstim for the parametric version.

Examples

Load example sparrow data (line transect survey type)
data(sparrowDetectionData)
data(sparrowSiteData)

Compare smoothed and half-normal detection function
dfuncSmu <- dfuncSmu(dist~1, sparrowDetectionData, w.hi=units::set_units(150, "m"))
dfuncHn <- dfuncEstim(formula=dist~1,sparrowDetectionData,w.hi=units::set_units(150, "m"))

Print and plot results
dfuncSmu
dfuncHn
plot(dfuncSmu,main="",nbins=50)

x <- seq(0,150,length=200)
y <- dnorm(x, 0, predict(dfuncHn)[1])
y <- y/y[1]
lines(x,y, col="orange", lwd=2)
legend("topright", legend=c("Smooth","Halfnorm"),

col=c("red","orange"), lwd=2)

EDR Effective Detection Radius (EDR) for estimated detection functions
with point transects

Description

Computes Effective Detection Radius (EDR) for estimated detection functions with point transects.
The point-transect equivalent to Effective Strip Width (ESW).

Usage

EDR(obj, newdata)

30 EDR

Arguments

obj An estimated detection function object. An estimated detection function object
has class ’dfunc’, and is usually produced by a call to dfuncEstim. The esti-
mated detection function may optionally contain a g(0) component. If no g(0)
component is found, g(0) = 1 is assumed.

newdata A data frame containing new values of the covariates at which EDR’s are sought.
If NULL or missing and obj contains covariates, the covariates stored in obj are
used. See Value section.

Details

The point-transect equivalent to Effective Strip Width (ESW).

Value

If newdata is not missing and not NULL and covariates are present in obj, returned value is a
vector with length equal to the number of rows in newdata. If newdata is missing or NULL and
covariates are present in obj, returned value is a vector with length equal to the number of detections
in obj$detections. In either of the above cases, elements in the returned vector are the effective
detection radii for the corresponding set of covariates.

If obj does not contain covariates, newdata is ignored and a scalar equal to the (constant) effective
detection radius for all detections is returned.

See Also

dfuncEstim, ESW, effectiveDistance

Examples

Load example thrasher data (point transect survey type)
data(thrasherDetectionData)

Fit half-normal detection function
dfunc <- dfuncEstim(formula=dist~1

, detectionData=thrasherDetectionData
, likelihood="halfnorm"
, w.hi=units::set_units(175, "m")
, pointSurvey=TRUE)

Compute effective detection radius (EDR)
EDR(dfunc)

EDR only applies to point transect surveys
ESW is the line transect equivalent
The effectiveDistance function tests whether the dfunc was
fit to line or point data, and returns either ESW or EDR accordingly
effectiveDistance(dfunc)

effectiveDistance 31

effectiveDistance Calculates the effective sampling distance for estimated detection
functions

Description

Computes Effective Strip Width (ESW) for line-transect detection functions, or the analogous Ef-
fective Detection Radius (EDR) for point-transect detection functions.

Usage

effectiveDistance(obj, newdata = NULL)

Arguments

obj An estimated detection function object. An estimated detection function object
has class ’dfunc’, and is usually produced by a call to dfuncEstim. The esti-
mated detection function may optionally contain a g(0) component. If no g(0)
component is found, g(0) = 1 is assumed.

newdata A data frame containing new values of the covariates at which ESW’s or EDR’s
are sought. If NULL or missing and obj contains covariates, the covariates
stored in obj are used. See Value section.

Details

Serves as a wrapper for ESW and EDR.

Value

If newdata is not missing or NULL and covariates are present in obj, returned value is a vector
with length equal to the number of rows in newdata. If newdata is missing or NULL and covariates
are present in obj, returned value is a vector with length equal to the number of detections in
obj$detections. In either of the above cases, elements in the returned vector are the effective
sampling distances for the corresponding set of covariates.

If obj does not contain covariates, newdata is ignored and a scalar equal to the (constant) effective
sampling distance for all detections is returned.

See Also

dfuncEstim ESW EDR

32 estimateN

estimateN Abundance point estimates

Description

Estimate abundance given a distance function, a "merged" data frame containing detections and
transect lengths, area, and the number of sides surveyed (if line-transects). This is called internally
by abundEstim. Most users will call abundEstim to estimate abundance.

Usage

estimateN(
dfunc,
data,
area = NULL,
surveyedSides,
lengthColumn,
control = RdistanceControls()

)

Arguments

dfunc An estimate distance function (see dfuncEstim).
data A data frame containing distance observations, transects, and lengths. This data

frame must have a column named ’siteID’ that identifies unique sites (transects
or points). If observations were made on line-transects, this data frame must also
have a column named by the lengthColumn parameter that contains transect
lengths. NA length transects are accepted and are dropped when computing
total transect length. Only observations on non-NA-length transects are toward
density.

area A scalar containing the total area of inference. Commonly, this is study area
size. If area is NULL (the default), area will be set to 1 square unit of the output
units and this produces abundance estimates equal density estimates. If area is
not NULL, it must have measurement units assigned by the units package. The
units on area must be convertible to squared output units. Units on area must
be two-dimensional. For example, if output units are "foo", units on area must
be convertible to "foo^2" by the units package. Units of "km^2", "cm^2", "ha",
"m^2", "acre", "mi^2", and many others are acceptable.

surveyedSides The number of sides of the transect that were surveyed. Either 1 or 2. Only
applies to line transects.

lengthColumn Character string specifying the (single) column in siteData that contains tran-
sect lengths. This is ignored if pointSurvey = TRUE. This column must have
measurement units.

control A list containing optimization control parameters such as the maximum number
of iterations, tolerance, the optimizer to use, etc. See the RdistanceControls
function for explanation of each value, the defaults, and the requirements for
this list. See examples below for how to change controls.

estimateN 33

Details

The abundance estimate for line-transect surveys (if no covariates are included in the detection
function and both sides of the transect were observed) is

N =
n(A)

2(ESW)(L)

where n is total number of sighted individuals (i.e., sum(dfunc$detections$groupSizes)), L is
the total length of surveyed transect (i.e., sum(siteData[,lengthColumn])), and ESW is effective
strip width computed from the estimated distance function (i.e., ESW(dfunc)). If only one side of
transects were observed, the "2" in the denominator is not present (or, replaced with a "1").

The abundance estimate for point transect surveys (if no covariates are included) is

N =
n(A)

π(ESR2)(P)

where n is total number of sighted individuals, P is the total number of surveyed points, and ESR is
effective search radius computed from the estimated distance function (i.e., ESR(dfunc)).

Setting plot.bs=FALSE and showProgress=FALSE suppresses all intermediate output.

Value

A list containing the following components:

density Estimated density in the surveyed area.

abundance Estimated abundance on the study area.

n.groups The number of detections (not individuals, unless all group sizes = 1) used to
estimate density and abundance.

n.seen The number of individuals (sum of group sizes) used to estimate density and
abundance.

area Total area of inference. Study area size

surveyedUnits Number of surveyed sites. This is total transect length for line-transects and
number of points for point-transects. This total transect length does not include
NA transects.

surveyedSides Number of sides (1 or 2) of transects surveyed. Only relevant for line-transects.

avg.group.size Average group size on non-NA transects

w Strip width.

pDetection Probability of detection.

For line-transects that do not involve covariates, x$density is x$n.seen / (x$surveyedSides * x$w *
x$pDetection * x$surveyedUnits)

See Also

dfuncEstim, abundEstim

34 ESW

ESW Line transect Effective Strip Width (ESW)

Description

Returns effective strip width (ESW) from an estimated line transect detection functions. This func-
tion applies only to line transect information. Function EDR is for point transect data. Function
effectiveDistance accepts either point or line transect data.

Usage

ESW(obj, newdata)

Arguments

obj An estimated detection function object. An estimated detection function object
has class ’dfunc’, and is usually produced by a call to dfuncEstim. The esti-
mated detection function may optionally contain a g(0) component that speci-
fies detection probability on the transect. If no g(0) component is found, g(0) =
1 is assumed.

newdata A data frame containing new values of the covariates at which ESW’s are sought.
If NULL or missing and obj contains covariates, the covariates stored in obj are
used. See Value section.

Details

Effective strip width (ESW) of a distance function is its integral. That is, ESW is the area under the
distance function from its left-truncation limit (obj$w.lo) to its right-truncation limit (obj$w.hi).
In mathematical notation,

ESW =

∫ w.hi

w.lo

g(x)dx,

where g(x) is the height of the distance function at distance x, and w.lo and w.hi are the lower and
upper truncation limits used during the survey.

If detection does not decline with distance, area under the detection function is the entire half-
width of the strip transect (i.e., obj$w.hi - obj$w.lo). In this case density is the number sighted
targets divided by area surveyed, where area surveyed is obj$w.hi-obj$w.lo times total length of
transects.

When detection declines with distance, less than the total half-width is effectively covered. In this
case, Buckland et al. (1993) show that the denominator of the density estimator is total length of
surveyed transects times area under the detection function (i.e., this integral). By analogy with the
non-declining detection case, ESW is the transect half-width that observers effectively cover. In
other words, if ESW = X, the study effectively covers the same area as a study with non-declining
detection out to a distance of X.

A technical consideration: Rdistance uses the trapezoid rule to numerically integrate under the dis-
tance function from obj$w.lo to obj$w.hi. Two-hundred trapezoids are used in the approximation
to speed calculations. In some rare cases, two hundred trapezoids may not be enough. In these
cases, users should modify this function’s code and bump seq.length to a value greater than 200.

F.double.obs.prob 35

Value

If newdata is not missing and not NULL and covariates are present in obj, the returned value is a
vector of ESW values associated with covariates in the distance function and equal in length to the
number of rows in newdata. If newdata is missing or NULL and covariates are present in obj, an
ESW vector with length equal to the number of detections in obj$detections is returned.

If obj does not contain covariates, newdata is ignored and a scalar equal to the (constant) effective
strip width for all detections is returned.

References

Buckland, S.T., Anderson, D.R., Burnham, K.P. and Laake, J.L. 1993. Distance Sampling: Esti-
mating Abundance of Biological Populations. Chapman and Hall, London.

See Also

dfuncEstim, EDR, effectiveDistance

Examples

Load example sparrow data (line transect survey type)
data(sparrowDetectionData)

dfunc <- dfuncEstim(formula=dist~1
, detectionData = sparrowDetectionData)

Compute effective strip width (ESW)
ESW(dfunc)

F.double.obs.prob Compute double observer probability of detection (No external covari-
ates allowed)

Description

Estimates the probability of detection in a two-observer system when observations are independent.

Usage

F.double.obs.prob(df, observer = "both")

Arguments

df A data frame containing the components $obsby.1 and $obsby.2. These com-
ponents are either 0/1 (0 = missed, 1 = seen) or TRUE/FALSE (logical) vectors
indicating whether observer 1 (obsby.1) or observer 2 (obsby.2) spotted the
target. There is no flexibility on naming these columns of df. They must be
named $obsby.1 and $obsby.2.

36 F.gx.estim

observer A number of text string indicating the primary observer. Primary observers can
be observer 1, or observer 2, or "both". If, for example, observer 2 was a data
recorder and part-time observer, or if observer 2 was the pilot, set observer =
1. This dictates which set of observations form the denominator of the double
observer system. For example, if observer = 1, observations by observer 1
that were not seen by observer 2 are ignored. The estimate in this case uses
targets seen by both observers and those seen by observer 2 but not observer
1. If observer = "both", the denominator is computed twice, once assuming
observer 1 was the primary, once assuming observer 2 was the primary, and then
computes the probability of one or more observers sighting a target.

Details

When observer = "both", the observers are assumed to be independent. In this case the estimate of
detection is

p = p1 + p2 − p1p2

where p1 is the proportion of targets seen by observer 2 that were also seen by observer 1, p2 is the
proportion of targets seen by observer 1 that were also seen by observer 2. This estimator is very
close to unbiased when observers are actually independent.

Value

A single scalar, the probability of detection estimate.

See Also

dfuncEstim, abundEstim

Examples

Fake observers
set.seed(538392)
obsrv <- data.frame(obsby.1=rbinom(100,1,.75), obsby.2=rbinom(100,1,.5))

F.double.obs.prob(obsrv, observer=1)
F.double.obs.prob(obsrv, observer=2)
F.double.obs.prob(obsrv, observer="both")

F.gx.estim F.gx.estim - Estimate g(0) or g(x)

Description

Estimate g(0) or g(x) for a specified distance function.

Usage

F.gx.estim(fit, x.scl = NULL, g.x.scl = NULL, observer = NULL)

F.gx.estim 37

Arguments

fit An estimated dfunc object. See dfuncEstim.

x.scl The x coordinate (a distance) at which to scale the sightability function to g.x.scl,
or the string "max". When x.scl is specified (i.e., not 0 or "max"), it must have
measurement units assigned using either library(units);units(x.scl) <-
'<units>' or x.scl <- units::set_units(x.scl, <units>). See units::valid_udunits()
for valid symbolic units. See Details for more on scaling the sightability func-
tion.

g.x.scl Height of the distance function at coordinate x. The distance function will be
scaled so that g(x.scl) = g.x.scl. If g.x.scl is not a data frame, it must be a
numeric value (vector of length 1) between 0 and 1. See Details.

observer A numeric scalar or text string specifying whether observer 1 or observer 2 or
both were full-time observers. This parameter dictates which set of observations
form the denominator of a double observer system. If, for example, observer 2
was a data recorder and part-time observer, or if observer 2 was the pilot, set
observer = 1. If observer = 1, observations by observer 1 not seen by observer
2 are ignored. The estimate of detection in this case is the ratio of number of
targets seen by both observers to the number seen by both plus the number seen
by just observer 2. If observer = "both", the computation goes both directions.

Details

This routine scales sightability such that g(x.scl) = g.x.scl, where g() is the sightability function.
Specification of x.scl and g.x.scl covers several estimation cases:

1. g(0) = 1 : (the default) Inputs are x.scl = 0, g.x.scl = 1. If w.lo > 0, x.scl will be set to
w.lo so technically this case is g(w.low) = 1.

2. User supplied probability at specified distance: Inputs are x.scl = a number greater than
or equal to w.lo, g.x.scl = a number between 0 and 1. This case covers situations where
sightability on the transect (distance 0) is not perfect. This case assumes researchers have
an independent estimate of sightability at distance x.scl off the transect. For example, re-
searchers could be using multiple observers to estimate that sightability at distance x.scl is
g.x.scl.

3. Maximum sightability specified: Inputs are x.scl="max", g.x.scl = a number between
0 and 1. In this case, g() is scaled such that its maximum value is g.x.scl. This routine
computes the distance at which g() is maximum, sets g()’s height there to g.x.scl, and returns
x.max where x.max is the distance at which g is maximized. This case covers the common
aerial survey situation where maximum sightability is slightly off the transect, but the distance
at which the maximum occurs is unknown. This case is the default, with g.x.scl = 1, when
gamma distance functions are estimated.

4. Double observer system: Inputs are x.scl="max", g.x.scl = <a data frame>. In this case,
g(x) = h, where x is the distance that maximizes g and h is the height of g() at x computed from
the double observer data frame (see below for structure of the double observer data frame).

5. Distance of independence specified, height computed from double observer system: In-
puts are x.scl = a number greater than or equal to w.lo g.x.scl = a data frame. In this
case, g(x.scl) = h, where h is computed from the double observer data frame (see below for
structure of the double observer data frame).

38 F.maximize.g

When x.scl, g.x.scl, or observer are NULL, the routine will look for and use $call.x.scl, or
$call.g.x.scl, or $call.observer components of the fit object for whichever of these three
parameters is missing. Later, different values can be specified in a direct call to F.gx.estim
without having to re-estimate the distance function. Because of this feature, the default values
in dfuncEstim are x.scl = 0 and g.x.scl = 1 and observer = "both".

Value

A list comprised of the following components:

x.scl The value of x (distance) at which g() is evaluated.

comp2 The estimated value of g() when evaluated at x.scl.

Structure of the double observer data frame

When g.x.scl is a data frame, it is assumed to contain the components $obsby.1 and $obsby.2
(no flexibility on names). Each row in the data frame contains data from one sighted target. The
$obsby.1 and $obsby.2 components are TRUE/FALSE (logical) vectors indicating whether ob-
server 1 (obsby.1) or observer 2 (obsby.2) spotted the target.

See Also

dfuncEstim

Examples

set.seed(555574)
x <- rnorm(1000) * 100
x <- x[0 < x & x < 100]
x <- units::set_units(x, "m")
un.dfunc <- dfuncEstim(x ~ 1

, likelihood = "logistic")
F.gx.estim(un.dfunc)

x <- rgamma(1000, shape = 5)
x <- units::set_units(x, "m")
gam.dfunc <- dfuncEstim(x ~ 1

, likelihood="Gamma")
F.gx.estim(gam.dfunc)

F.maximize.g Find the coordinate of the maximum of a distance function

Description

Find the x coordinate that maximizes g(x).

F.nLL 39

Usage

F.maximize.g(fit, covars = NULL)

Arguments

fit An estimated ’dfunc’ object produced by dfuncEstim.

covars Covariate values to calculate maximum for.

Value

The value of x that maximizes g(x) in fit.

See Also

dfuncEstim

Examples

Not run:
Fake data
set.seed(22223333)
x <- rgamma(100, 10, 1)

fit <- dfuncEstim(x, likelihood="Gamma", x.scl="max")

F.maximize.g(fit) # should be near 10.
fit$x.scl # same thing

End(Not run)

F.nLL Return the negative log likelihood for a set of distance values

Description

Return value of the negative log likelihood for a vector of observed distances given a specified
likelihood, number of expansion terms, and estimated parameters.

Usage

F.nLL(
a,
dist,
covars = NULL,
like,
w.lo = 0,
w.hi = max(dist),

40 F.nLL

series,
expansions = 0,
pointSurvey,
for.optim = F

)

Arguments

a A vector of parameter values for the likelihood. Length of this vector must be
expansions + 1 + 1*(like %in% c("hazrate", "uniform")).

dist A vector of observed distances. All values must be between w.lo and w.hi (see
below).

covars Data frame containing values of covariates at each observation in dist.

like String specifying the form of the likelihood. Built-in distance functions at present
are "uniform", "halfnorm", "hazrate", "negexp", and "Gamma". To be valid, a
function named paste(like,".like") (e.g., "uniform.like") must exist some-
where in this routine’s scope. This routine finds the ".like" function and calls it
with the appropriate parameters. A user-defined likelihood can be implemented
by simply defining a function with the ".like" extension and giving the root name
here. For example, define a function named "myLike.like" in the .GlobalEnv
and set like="myLike" here. See the vignette on this topic.

w.lo Lower or left-truncation limit of the distances. This is the minimum possible
off-transect distance. Default is 0.

w.hi Upper or right-truncation limit of the distances. This is the maximum off-
transect distance that could be observed. Default is the maximum observed
distance.

series String specifying the type of expansion to use series if expansions > 0. Valid
values at present are ’simple’, ’hermite’, and ’cosine’.

expansions A scalar specifying the number of terms in series to compute. Depending on
the series, this could be 0 through 5. The default of 0 equates to no expansion
terms of any type.

pointSurvey Boolean. TRUE if dist is point transect data, FALSE if line transect data.

for.optim Boolean. If TRUE, values are multiplied by 10^9 to help optim converge more
consistently.

Value

A scalar, the negative of the log likelihood evaluated at parameters a, including expansion terms.

See Also

See uniform.like and links there; dfuncEstim

F.start.limits 41

F.start.limits Set starting values and limits for parameters of Rdistance functions

Description

Return reasonable starting values and limits (boundaries) for the parameters of distance functions.
Starting values and limits are specified for all likelihoods and expansion terms. This function is
called by other routines in Rdistance, and is not intended to be called by the user.

Usage

F.start.limits(
like,
expan,
w.lo,
w.hi,
dist,
covars = NULL,
pointSurvey = FALSE

)

Arguments

like String specifying the likelihood for the distance function. Possible values are
"hazrate" for hazard rate likelihood, "halfnorm" for the half normal likelihood,
"uniform" for the uniform likelihood, "negexp" for the negative exponential like-
lihood, and "Gamma" for the gamma likelihood.

expan Number of expansion terms to include. Valid values are 0, 1, ..., 3.

w.lo Lower or left-truncation limit of the distances. Normally, 0.

w.hi Upper or right-truncation limit of the distances. This is the maximum off-
transect distance that could be observed.

dist The vector of observed off-transect distances being analyzed. This vector is only
required for like = "Gamma" and "halfnorm".

covars Matrix of covariate values.

pointSurvey Boolean. TRUE if point transect data, FALSE if line transect data.

Details

The number of parameters to be fitted is expan + 1 + 1*(like %in% c("hazrate", "uniform")).
This is the length of all vectors returned in the output list.

42 F.start.limits

Value

A list containing the following components

start Vector of reasonable starting values for parameters of the likelihood and expan-
sion terms.

lowlimit Vector of lower limits for the likelihood parameters and expansion terms.

uplimit Vector of upper limits for the likelihood parameters and expansion terms.

names Vector of names for the likelihood parameters and expansion terms.

See Also

dfuncEstim

Examples

data(sparrowDetectionData)
dist <- sparrowDetectionData$dist
units(dist) <- "m"
wl <- units::as_units(0, "m")
wh <- units::as_units(1000, "m")

F.start.limits("uniform", 0, wl, wh, dist)
F.start.limits("uniform", 1, wl, wh, dist)
F.start.limits("uniform", 2, wl, wh, dist)
F.start.limits("uniform", 3, wl, wh, dist)

F.start.limits("halfnorm", 0, wl, wh, dist)
F.start.limits("halfnorm", 1, wl, wh, dist)
F.start.limits("halfnorm", 2, wl, wh, dist)
F.start.limits("halfnorm", 3, wl, wh, dist)

F.start.limits("halfnorm", 0, wl, wh, dist, pointSurvey = TRUE)
F.start.limits("halfnorm", 1, wl, wh, dist, pointSurvey = TRUE)
F.start.limits("halfnorm", 2, wl, wh, dist, pointSurvey = TRUE)
F.start.limits("halfnorm", 3, wl, wh, dist, pointSurvey = TRUE)

F.start.limits("halfnorm", 0, wl, wh, dist, data.frame(A=1, B=2))
F.start.limits("halfnorm", 1, wl, wh, dist, data.frame(A=1, B=2))
F.start.limits("halfnorm", 2, wl, wh, dist, data.frame(A=1, B=2))
F.start.limits("halfnorm", 3, wl, wh, dist, data.frame(A=1, B=2))

F.start.limits("halfnorm", 0, wl, wh, dist, data.frame(A=1, B=2), TRUE)
F.start.limits("halfnorm", 1, wl, wh, dist, data.frame(A=1, B=2), TRUE)
F.start.limits("halfnorm", 2, wl, wh, dist, data.frame(A=1, B=2), TRUE)
F.start.limits("halfnorm", 3, wl, wh, dist, data.frame(A=1, B=2), TRUE)

F.start.limits("hazrate", 0, wl, wh, dist)
F.start.limits("hazrate", 1, wl, wh, dist)
F.start.limits("hazrate", 2, wl, wh, dist)
F.start.limits("hazrate", 3, wl, wh, dist)

Gamma.like 43

F.start.limits("negexp", 0, wl, wh, dist)
F.start.limits("negexp", 1, wl, wh, dist)
F.start.limits("negexp", 2, wl, wh, dist)
F.start.limits("negexp", 3, wl, wh, dist)

F.start.limits("Gamma", 0, wl, wh, dist)

Gamma.like Gamma.like - Gamma distance function

Description

Computes the gamma likelihood, scaled appropriately, for use as a likelihood in estimating a dis-
tance function.

Usage

Gamma.like(
a,
dist,
covars = NULL,
w.lo = units::set_units(0, "m"),
w.hi = max(dist),
series = "cosine",
expansions = 0,
scale = TRUE,
pointSurvey = FALSE

)

Arguments

a A vector of likelihood parameter values. Length and meaning depend on series
and expansions. If no expansion terms were called for (i.e., expansions = 0),
the distance likelihoods contain one or two canonical parameters (see Details).
If one or more expansions are called for, coefficients for the expansion terms
follow coefficients for the canonical parameters. If p is the number of canonical
parameters, coefficients for the expansion terms are a[(p+1):length(a)].

dist A numeric vector containing the observed distances.

covars Data frame containing values of covariates at each observation in dist.

w.lo Scalar value of the lowest observable distance. This is the left truncation of
sighting distances in dist. Same units as dist. Values less than w.lo are
allowed in dist, but are ignored and their contribution to the likelihood is set to
NA in the output.

w.hi Scalar value of the largest observable distance. This is the right truncation of
sighting distances in dist. Same units as dist. Values greater than w.hi are
allowed in dist, but are ignored and their contribution to the likelihood is set to
NA in the output.

44 Gamma.like

series A string specifying the type of expansion to use. Currently, valid values are
’simple’, ’hermite’, and ’cosine’; but, see dfuncEstim about defining other se-
ries.

expansions A scalar specifying the number of terms in series. Depending on the series,
this could be 0 through 5. The default of 0 equates to no expansion terms of any
type.

scale Logical scalar indicating whether or not to scale the likelihood so it integrates to
1. This parameter is used to stop recursion in other functions. If scale equals
TRUE, a numerical integration routine (integration.constant) is called, which
in turn calls this likelihood function again with scale = FALSE. Thus, this rou-
tine knows when its values are being used to compute the likelihood and when
its value is being used to compute the constant of integration. All user defined
likelihoods must have and use this parameter.

pointSurvey Boolean. TRUE if dist is point transect data, FALSE if line transect data.

Details

This function utilizes the built-in R function dgamma to evaluate the gamma density function. Using
the parameterization of dgamma, the gamma shape parameter is a[1] while the gamma scale pa-
rameter is (a[2]/gamma(r)) * (((r - 1)/exp(1))^(r - 1)). Currently, this function implements
a non-covariate version of the gamma detection function used by Becker and Quang (2009). In
future, linear equations will relate covariate values to values of the gamma parameters. This future
implementation will fully replicate the distance functions of Becker and Quang (2009).

Value

A numeric vector the same length and order as dist containing the likelihood contribution for
distances in dist. Assuming L=gamma.like(c(r,lam),dist), the full log likelihood of all the
data is -sum(log(L), na.rm=T). Note that the returned likelihood value for distances less than
w.lo or greater than w.hi is NA, and thus it is prudent to use na.rm=TRUE in the sum. If scale =
TRUE, the integral of the likelihood from w.lo to w.hi is 1.0. If scale = FALSE, the integral of
the likelihood is an arbitrary constant.

References

Becker, E. F., and P. X. Quang, 2009. A Gamma-Shaped Detection Function for Line-Transect
Surveys with Mark-Recapture and Covariate Data. Journal of Agricultural, Biological, and Envi-
ronmental Statistics 14(2):207-223.

See Also

dfuncEstim, halfnorm.like, hazrate.like, uniform.like, negexp.like

Examples

Not run:
set.seed(238642)
x <- seq(0, 100, length=100)

Gamma.start.limits 45

Plots showing effects of changes in shape
plot(x, Gamma.like(c(20,20), x), type="l", col="red")
plot(x, Gamma.like(c(40,20), x), type="l", col="blue")

Plots showing effects of changes in scale
plot(x, Gamma.like(c(20,20), x), type="l", col="red")
plot(x, Gamma.like(c(20,40), x), type="l", col="blue")

Estimate 'Gamma' distance function
r <- 5
lam <- 10
b <- (1/gamma(r)) * (((r - 1)/exp(1))^(r - 1))
x <- rgamma(1000, shape=r, scale=b*lam)
dfunc <- dfuncEstim(x~1, likelihood="Gamma", x.scl="max")
plot(dfunc)

End(Not run)

Gamma.start.limits Gamma.start.limits - Start and limit values for Gamma parameters.

Description

Compute starting values and limits for the Gamma likelihood function.

Usage

Gamma.start.limits(dist, covars, expansions, w.lo, w.hi)

Arguments

dist A numeric vector containing observed distances with measurement units.

covars Data frame containing values of covariates at each observation in dist.

expansions A scalar specifying the number of terms in series. Depending on the series,
this could be 0 through 5. The default of 0 equates to no expansion terms of any
type.

w.lo Scalar value of the lowest observable distance, with measurement units. This is
the left truncation sighting distance. Values less than w.lo are allowed in dist,
but are ignored and their likelihood value is set to NA in the output.

w.hi Scalar value of the largest observable distance, with measurement units. This is
the right truncation sighting distance. Values greater than w.hi are allowed in
dist, but are ignored and their likelihood value is set to NA in the output.

46 getDfuncModelFrame

Value

A list containing the following components:

• start : a vector of starting values

• lowlimit : a vector of lower limits (can be -Inf)

• highlimit : a vector of upper limits (can be Inf)

• nms : a vector containing names of the parameters

getDfuncModelFrame Return model frame for dfunc

Description

Returns the model frame from a formula and data set. This routine is intended to only be called
from within other Rdistance functions.

Usage

getDfuncModelFrame(formula, data)

Arguments

formula A dfunc formula object. See dfuncEstim.

data The data frame from which variables in formula (potentially) come.

Details

This routine is needed to get the scoping correct in dfuncEstim. In dfuncEstim, we first merge the
detection and site data frames, then call this routine.

Value

a model frame containing the response and covariates resulting from evaluating formula in data.

halfnorm.like 47

halfnorm.like Half-normal likelihood function for distance analyses

Description

This function computes the likelihood contributions for sighting distances, scaled appropriately, for
use as a distance likelihood.

Usage

halfnorm.like(
a,
dist,
covars = NULL,
w.lo = units::set_units(0, "m"),
w.hi = max(dist),
series = "cosine",
expansions = 0,
scale = TRUE,
pointSurvey = FALSE

)

Arguments

a A vector of likelihood parameter values. Length and meaning depend on series
and expansions. If no expansion terms were called for (i.e., expansions = 0),
the distance likelihoods contain one or two canonical parameters (see Details).
If one or more expansions are called for, coefficients for the expansion terms fol-
low coefficients for the canonical parameters. i.e., if p is the number of canonical
parameters, coefficients for the expansion terms are a[(p+1):length(a)].

dist A numeric vector containing the observed distances.

covars Data frame containing values of covariates at each observation in dist.

w.lo Scalar value of the lowest observable distance. This is the left truncation of
sighting distances in dist. Same units as dist. Values less than w.lo are
allowed in dist, but are ignored and their contribution to the likelihood is set to
NA in the output.

w.hi Scalar value of the largest observable distance. This is the right truncation of
sighting distances in dist. Same units as dist. Values greater than w.hi are
allowed in dist, but are ignored and their contribution to the likelihood is set to
NA in the output.

series A string specifying the type of expansion to use. Currently, valid values are
’simple’, ’hermite’, and ’cosine’; but, see dfuncEstim about defining other se-
ries.

expansions A scalar specifying the number of terms in series. Depending on the series,
this could be 0 through 5. The default of 0 equates to no expansion terms of any
type.

48 halfnorm.like

scale Logical scalar indicating whether or not to scale the likelihood so it integrates to
1. This parameter is used to stop recursion in other functions. If scale equals
TRUE, a numerical integration routine (integration.constant) is called, which
in turn calls this likelihood function again with scale = FALSE. Thus, this rou-
tine knows when its values are being used to compute the likelihood and when
its value is being used to compute the constant of integration. All user defined
likelihoods must have and use this parameter.

pointSurvey Boolean. TRUE if distances in dist are radial from point transects, FALSE if
distances are perpendicular off-transect distances.

Details

The half-normal likelihood is
f(x|a) = exp(−x2/(2 ∗ a2))

where a is the parameter to be estimated. Some half-normal distance functions in the literature do
not use a "2" in the denominator of the exponent. Rdistance uses a "2" in the denominator of
the exponent to make quantiles of this function agree with the standard normal which means a can
be interpreted as a normal standard error. e.g., approximately 95% of all observations will occur
between 0 and 2a.

Expansion Terms: If expansions = k (k > 0), the expansion function specified by series is called
(see for example cosine.expansion). Assuming hij(x) is the jth expansion term for the ith

distance and that c1, c2, . . . , ckare (estimated) coefficients for the expansion terms, the likelihood
contribution for the ith distance is,

f(x|a, b, c1, c2, . . . , ck) = f(x|a, b)(1 +
k∑

j=1

cjhij(x)).

f(x|a,b,c_1,c_2,...,c_k) = f(x|a,b)(1 + c(1) h_i1(x) + c(2) h_i2(x) + ... + c(k) h_ik(x)).

Value

A numeric vector the same length and order as dist containing the likelihood contribution for
corresponding distances in dist. Assuming L is the returned vector from one of these functions, the
negative log likelihood of all the data is -sum(log(L), na.rm=T). Note that the returned likelihood
value for distances less than w.lo or greater than w.hi is NA, hence na.rm=TRUE in the sum. If
scale = TRUE, the integral of the likelihood from w.lo to w.hi is 1.0. If scale = FALSE, the
integral of the likelihood is something else. Values are always greater than or equal to zero.

See Also

dfuncEstim, hazrate.like, uniform.like, negexp.like, Gamma.like

Examples

Not run:
set.seed(238642)
x <- seq(0, 100, length=100)

Plots showing effects of changes in parameter Sigma

hazrate.like 49

plot(x, halfnorm.like(20, x), type="l", col="red")
plot(x, halfnorm.like(40, x), type="l", col="blue")

Estimate 'halfnorm' distance function
a <- 5
x <- rnorm(1000, mean=0, sd=a)
x <- x[x >= 0]
dfunc <- dfuncEstim(x~1, likelihood="halfnorm")
plot(dfunc)

evaluate the log Likelihood
L <- halfnorm.like(dfunc$parameters, dfunc$detections$dist, covars=dfunc$covars,

w.lo=dfunc$w.lo, w.hi=dfunc$w.hi,
series=dfunc$series, expansions=dfunc$expansions,
scale=TRUE)

-sum(log(L), na.rm=TRUE) # the negative log likelihood

End(Not run)

hazrate.like hazrate.like - Hazard rate likelihood

Description

Computes the hazard rate likelihood of off-transect distances, given parameters. Primarily used as
a minimization objective during distance function estimation.

Usage

hazrate.like(
a,
dist,
covars = NULL,
w.lo = units::set_units(0, "m"),
w.hi = max(dist),
series = "cosine",
expansions = 0,
scale = TRUE,
pointSurvey = FALSE

)

Arguments

a A vector of likelihood parameter values. Length and meaning depend on series
and expansions. If no expansion terms were called for (i.e., expansions = 0),
the distance likelihoods contain one or two canonical parameters (see Details).
If one or more expansions are called for, coefficients for the expansion terms
follow coefficients for the canonical parameters. If p is the number of canonical
parameters, coefficients for the expansion terms are a[(p+1):length(a)].

50 hazrate.like

dist A numeric vector containing the observed distances.

covars Data frame containing values of covariates at each observation in dist.

w.lo Scalar value of the lowest observable distance. This is the left truncation of
sighting distances in dist. Same units as dist. Values less than w.lo are
allowed in dist, but are ignored and their contribution to the likelihood is set to
NA in the output.

w.hi Scalar value of the largest observable distance. This is the right truncation of
sighting distances in dist. Same units as dist. Values greater than w.hi are
allowed in dist, but are ignored and their contribution to the likelihood is set to
NA in the output.

series A string specifying the type of expansion to use. Currently, valid values are
’simple’, ’hermite’, and ’cosine’; but, see dfuncEstim about defining other se-
ries.

expansions A scalar specifying the number of terms in series. Depending on the series,
this could be 0 through 5. The default of 0 equates to no expansion terms of any
type.

scale Logical scalar indicating whether or not to scale the likelihood so it integrates to
1. This parameter is used to stop recursion in other functions. If scale equals
TRUE, a numerical integration routine (integration.constant) is called, which
in turn calls this likelihood function again with scale = FALSE. Thus, this rou-
tine knows when its values are being used to compute the likelihood and when
its value is being used to compute the constant of integration. All user defined
likelihoods must have and use this parameter.

pointSurvey Boolean. TRUE if dist is point transect data, FALSE if line transect data.

Details

The hazard rate likelihood is

f(x|σ, k) = 1− exp(−(x/σ)−k)

where σ determines location (i.e., distance at which the function equals 1 - exp(-1) = 0.632), and k
determines slope of the function at σ (i.e., larger k equals steeper slope at σ). For distance analysis,
the valid range for both σ and k is ≥ 0.

Expansion Terms: If expansions = e (e > 0), the expansion function specified by series is called
(see for example cosine.expansion). Assuming hij(x) is the jth expansion term for the ith

distance and that c1, c2, . . . , ck are (estimated) coefficients for the expansion terms, the likelihood
contribution for the ith distance is,

f(x|a, b, c1, c2, . . . , ce) = f(x|a, b)(1 +
e∑

j=1

cjhij(x)).

Value

A numeric vector the same length and order as dist containing the likelihood contribution for
corresponding distances in dist. Assuming L is the returned vector from one of these functions, the
full log likelihood of all the data is -sum(log(L), na.rm=T). Note that the returned likelihood value

hermite.expansion 51

for distances less than w.lo or greater than w.hi is NA, and thus it is prudent to use na.rm=TRUE
in the sum. If scale = TRUE, the integral of the likelihood from w.lo to w.hi is 1.0. If scale =
FALSE, the integral of the likelihood is arbitrary.

See Also

dfuncEstim, halfnorm.like, uniform.like, negexp.like, Gamma.like

Examples

Not run:
x <- seq(0, 100, length=100)

Plots showing effects of changes in sigma
plot(x, hazrate.like(c(20, 5), x), type="l", col="red")
plot(x, hazrate.like(c(40, 5), x), type="l", col="blue")

Plots showing effects of changes in beta
plot(x, hazrate.like(c(50, 20), x), type="l", col="red")
plot(x, hazrate.like(c(50, 2), x), type="l", col="blue")

End(Not run)

hermite.expansion Calculation of Hermite expansion for detection function likelihoods

Description

Computes the Hermite expansion terms used in the likelihood of a distance analysis. More gener-
ally, will compute a Hermite expansion of any numeric vector.

Usage

hermite.expansion(x, expansions)

Arguments

x In a distance analysis, x is a numeric vector containing the proportion of a strip
transect’s half-width at which a group of individuals was sighted. If w is the
strip transect half-width or maximum sighting distance, and d is the perpendic-
ular off-transect distance to a sighted group (d ≤ w), x is usually d/w. More
generally, x is a vector of numeric values.

expansions A scalar specifying the number of expansion terms to compute. Must be one of
the integers 1, 2, 3, or 4.

52 integration.constant

Details

There are, in general, several expansions that can be called Hermite. The Hermite expansion used
here is:

• First term:
h1(x) = x4 − 6x2 + 3,

• Second term:
h2(x) = x6 − 15x4 + 45x2 − 15,

• Third term:
h3(x) = x8 − 28x6 + 210x4 − 420x2 + 105,

• Fourth term:

h4(x) = x10− 45x8 + 630x6 − 3150x4 + 4725x2 − 945,

The maximum number of expansion terms computed is 4.

Value

A matrix of size length(x) X expansions. The columns of this matrix are the Hermite polynomial
expansions of x. Column 1 is the first expansion term of x, column 2 is the second expansion term
of x, and so on up to expansions.

See Also

dfuncEstim, cosine.expansion, simple.expansion, and the discussion of user defined likeli-
hoods in dfuncEstim.

Examples

set.seed(83828233)
x <- rnorm(1000) * 100
x <- x[0 < x & x < 100]
herm.expn <- hermite.expansion(x, 3)

integration.constant Compute the integration constant for distance density functions

Description

Using numerical integration, this function computes the area under a distance function between two
limits (w.lo and w.hi).

integration.constant 53

Usage

integration.constant(
dist,
density,
a,
covars,
w.lo,
w.hi,
series,
expansions,
pointSurvey

)

Arguments

dist Vector of detection distance values.

density A likelihood function for which the integration constant is sought. This func-
tion must be capable of evaluating values between w.lo and w.hi and have the
following parameters:

• ‘a’ = Parameter vector.
• ‘dist’ = Vector of distances.
• ‘covars’ = If the density allows covariates, the covariate matrix.
• ‘w.lo’ = Lower limit or left truncation value.
• ‘w.hi’ = Upper limit or right truncation value.
• ‘series’ = Form of the series expansions, if any.
• ‘expansions’ = Number of expansion terms.
• ‘scale’ = Whether to scale function to integrate to 1.

a Vector of parameters to pass to density.

covars Matrix of covariate values.

w.lo The lower limit of integration, or the left truncation value for perpendicular dis-
tances.

w.hi The upper limit of integration, or the right truncation value for perpendicular
distances.

series The series to use for expansions. If expansions > 0, this string specifies the
type of expansion. Valid values at present are ’simple’, ’hermite’, and ’cosine’.

expansions Number of expansions in density.

pointSurvey Boolean. TRUE if point transect data, FALSE if line transect data.

Details

The trapezoid rule is used to numerically integrate density from w.lo to w.hi. Two-hundred (200)
equal-sized trapezoids are used in the integration. The number of trapezoids to use is fixed and
cannot be changed without re-writing this routine.

54 isUnitless

Value

A scalar (or vector of scalars if covariates are present) that is the area under density between w.lo
and w.hi. This scalar can be used as a divisor to scale density such that it integrates to 1.0. If x =
density(. . .), then x / integration.constant(density, ...) will integrate to 1.0.

See Also

dfuncEstim, halfnorm.like

Examples

Can put any number for first argument (1 used here)
scl <- integration.constant(dist=units::set_units(1,"m")

, density=logistic.like
, covars = NULL
, pointSurvey = FALSE
, w.lo = units::set_units(0,"m")
, w.hi = units::set_units(100,"m")
, expansions = 0
, a=c(75,25))

print(scl) # Should be 75.1

x <- units::set_units(seq(0,100,length=200), "m")
y <- logistic.like(c(75,25), x, scale=FALSE) / scl
int.y <- (x[2]-x[1]) * sum(y[-length(y)]+y[-1]) / 2 # the trapezoid rule, should be 1.0
print(int.y) # Should be 1

isUnitless isUnitless - Test whether object is unitless

Description

Tests whether a ’units’ object is actually unitless. Unitless objects, such as ratios, should be assigned
units of ’[1]’. Often they are, but sometimes unitless ratios are assigned units like ’[m/m]’. The
units package should always convert ’[m/m]’ to ’[1]’, but it does not always. Sometimes units like
’[m/m]’ mess things up, so it is better to remove them before calculations.

Usage

isUnitless(obj)

Arguments

obj A numeric scaler or vector, with or without units.

Value

TRUE if obj has units and they are either ’[1]’ or the denominator units equal the numerator units.
Otherwise, return FALSE. If obj does not have units, this routine returns TRUE.

likeParamNames 55

Examples

a <- units::set_units(2, "m")
b <- a / a
isUnitless(a)
isUnitless(b)
isUnitless(3)

likeParamNames Likelihood parameter names

Description

Returns names of the likelihood parameters. This is a helper function and is not necessary for
estimation. It is a nice to label some outputs in Rdistance with parameter names like "sigma" or
"knee", depending on the likelihood, and this routine provides a way to do that.

Usage

likeParamNames(like.form)

Arguments

like.form A text string naming the form of the likelihood.

Details

For user defined functions, ensure that the user defined start-limits function named <likelihood>.start.limits
can be evaluated on a distance of 1, can accept 0 expansions, a low limit of 0 a high limit of 1, and
that it returns the parameter names as the $names component of the result. That is, the code that re-
turns user-defined parameter names is, fn <- match.fun(paste0(like.form, ".start.limits"));
ans <- fn(1, 0, 0, 1); ans$names

Value

A vector of parameter names for that likelihood

56 lines.dfunc

lines.dfunc lines.dfunc - Lines method for distance (detection) functions

Description

Lines method for objects of class ’dfunc’. Distance function line methods add distance functions
to existing plots.

Usage

S3 method for class 'dfunc'
lines(x, newdata = NULL, ...)

Arguments

x An estimated distance function resulting from a call to dfuncEstim.

newdata Data frame similar to the newdata parameter to lm containing new values for
covariates in the distance function. One distance function is computed and plot-
ted for each row in the data frame. If newdata is NULL, the routine computes
the mean of all numeric covariates in the distance function and the mode of all
factor covariates in the distance function. The new mean and mode vector is
used to predict and plot a distance function.

... Parameters to lines used to control attributes like color, line width, line type,
etc.

Value

A data frame containing the x and y coordinates of the plotted line(s) is returned invisibly.

See Also

dfuncEstim, plot.dfunc, print.abund

Examples

set.seed(87654)
x <- rnorm(1000, mean=0, sd=20)
x <- x[x >= 0]
x <- units::set_units(x, "mi")
dfunc <- dfuncEstim(x~1, likelihood="halfnorm")
plot(dfunc, nbins = 40, col="lightgrey", border=NA, vertLines=FALSE)
lines(dfunc, col="grey", lwd=15)
lines(dfunc, col="black", lwd=5, lty = 2)

Multiple lines
data(sparrowDetectionData)
data(sparrowSiteData)
dfuncObs <- dfuncEstim(formula = dist ~ observer

logistic.like 57

, likelihood = "halfnorm"
, detectionData = sparrowDetectionData
, siteData = sparrowSiteData)

plot(dfuncObs
, vertLines = FALSE
, lty = 0
, col = c("grey","lightgrey")
, border=NA
, main="Detection by observer"
, legend = FALSE)

y <- lines(dfuncObs
, newdata = data.frame(observer = levels(sparrowSiteData$observer))
, col = palette.colors(length(levels(sparrowSiteData$observer)))
, lty = 1
, lwd = 4)

head(y) # values returned, same as predict method

logistic.like logistic.like - Logistic distance function likelihood

Description

Computes a two parameter logistic distance function.

Usage

logistic.like(
a,
dist,
covars = NULL,
w.lo = units::set_units(0, "m"),
w.hi = max(dist),
series = "cosine",
expansions = 0,
scale = TRUE,
pointSurvey = FALSE

)

Arguments

a A vector of likelihood parameter values. Length and meaning depend on whether
covariates and expansions are present as follows:

• If no covariates and no expansions: a = [a, b] (see Details)
• If no covariates and k expansions: a = [a, b, e1, ..., ek]
• If p covariates and no expansions: a = [a, b, b1, ..., bp]
• If p covariates and k expansions: a = [a, b, b1, ..., bp, e1, ..., ek]

dist A numeric vector containing observed distances with measurement units.

58 logistic.like

covars Data frame containing values of covariates at each observation in dist.

w.lo Scalar value of the lowest observable distance, with measurement units. This is
the left truncation sighting distance. Values less than w.lo are allowed in dist,
but are ignored and their likelihood value is set to NA in the output.

w.hi Scalar value of the largest observable distance, with measurement units. This is
the right truncation sighting distance. Values greater than w.hi are allowed in
dist, but are ignored and their likelihood value is set to NA in the output.

series A string specifying the type of expansion to use. Currently, valid values are
’simple’, ’hermite’, and ’cosine’; but, see dfuncEstim about defining other se-
ries.

expansions A scalar specifying the number of terms in series. Depending on the series,
this could be 0 through 5. The default of 0 equates to no expansion terms of any
type.

scale Logical scalar indicating whether or not to scale the likelihood into a density
function, i.e., so that it integrates to 1. This parameter is used to stop recur-
sion in other functions. If scale equals TRUE, a numerical integration routine
(integration.constant) is called, which in turn calls this likelihood function
again with scale = FALSE. Thus, this routine knows when its values are being
used to compute the likelihood and when its values are being used to compute
the constant of integration. All user defined likelihoods must have and use this
parameter.

pointSurvey Boolean. TRUE if dist is point transect data, FALSE if line transect data.

Details

The ’logistic’ likelihood contains two parameters. Parameter a determines the scale and is labeled
’threshold’ in Rdistance. Parameter b determines sharpness (slope) of the likelihood’s decrease at a
and is labeled ’knee’ in Rdistance. This function is sometimes called the heavy side function (e.g.,
engineering). The technical form of the function is,

f(x|a, b) = 1− 1

1 + exp(−b(x− a))
=

exp(−b(x− a))

1 + exp(−b(x− a))
,

Parameter a is the location (distance) of 0.5. That is, the inverse likelihood of 0.5 is a before scaling
(i.e., logistic.like(c(a,b), a, scale=FALSE) equals 0.5).

Parameter b is slope of function at a. Prior to scaling, slope of the likelihood at a is −b/4. If b is
large, the "knee" is sharp and the likelihood can look uniform with support from w.lo to a/f(0). If
b is small, the "knee" is shallow and the density of observations declines in an elongated "S" shape
pivoting at a/f(0). As b grows large and assuming f(0) = 1, the effective strip width approaches a.

See plots in Examples.

Value

A numeric vector the same length and order as dist containing the likelihood contribution for
corresponding distances in dist. Assuming L is the returned vector, the log likelihood of all data
is -sum(log(L), na.rm=T). Note that the returned likelihood value for distances less than w.lo or
greater than w.hi is NA, and thus it is essential to use na.rm=TRUE in the sum. If scale = TRUE, the

logistic.start.limits 59

integral of the likelihood from w.lo to w.hi is 1.0. If scale = FALSE, the integral of the likelihood
is arbitrary.

Expansion Terms

If expansions = k (k > 0), the expansion function specified by series is called (see for example
cosine.expansion). Assuming hij(x) is the jth expansion term for the ith distance and that
c1, c2, . . . , ck are (estimated) coefficients, the likelihood contribution for the ith distance is,

f(x|a, b, c1, c2, . . . , ck) = f(x|a, b)(1 +
k∑

j=1

cjhij(x)).

See Also

dfuncEstim, halfnorm.like, hazrate.like, negexp.like, Gamma.like

Examples

x <- units::set_units(seq(0, 100, length=100), "m")

Plots showing effects of changes in Threshold
plot(x, logistic.like(c(20, 20), x), type="l", col="red")
lines(x, logistic.like(c(40, 20), x), type="l", col="blue")

Plots showing effects of changes in Knee
plot(x, logistic.like(c(50, 100), x), type="l", col="red")
lines(x, logistic.like(c(50, 1), x), type="l", col="blue")
lines(x, logistic.like(c(50, .1), x), type="l", col="orange")

logistic.start.limits logistic.start.limits - Start and limit values for logistic distance func-
tion

Description

Starting values and limits for parameters of the logistic distance function.

Usage

logistic.start.limits(dist, covars, expansions, w.lo, w.hi)

60 negexp.like

Arguments

dist A numeric vector containing observed distances with measurement units.

covars Data frame containing values of covariates at each observation in dist.

expansions A scalar specifying the number of terms in series. Depending on the series,
this could be 0 through 5. The default of 0 equates to no expansion terms of any
type.

w.lo Scalar value of the lowest observable distance, with measurement units. This is
the left truncation sighting distance. Values less than w.lo are allowed in dist,
but are ignored and their likelihood value is set to NA in the output.

w.hi Scalar value of the largest observable distance, with measurement units. This is
the right truncation sighting distance. Values greater than w.hi are allowed in
dist, but are ignored and their likelihood value is set to NA in the output.

Details

This function is usually called within F.start.limits.

Value

A list containing the following components:

• start : a vector of starting values

• lowlimit : a vector of lower limits (can be -Inf)

• highlimit : a vector of upper limits (can be Inf)

• nms : a vector containing names of the parameters

negexp.like negexp.like - Negative exponential distance function

Description

Computes the negative exponential form of a distance function

Usage

negexp.like(
a,
dist,
covars = NULL,
w.lo = units::set_units(0, "m"),
w.hi = max(dist),
series = "cosine",
expansions = 0,
scale = TRUE,
pointSurvey = FALSE

)

negexp.like 61

Arguments

a A vector of likelihood parameter values. Length and meaning depend on series
and expansions. If no expansion terms were called for (i.e., expansions = 0),
the distance likelihood contains only one canonical parameter, which is the first
element of a (see Details). If one or more expansions are called for, coefficients
for the expansion terms follow coefficients for the canonical parameter.

dist A numeric vector containing the observed distances.

covars Data frame containing values of covariates at each observation in dist.

w.lo Scalar value of the lowest observable distance. This is the left truncation of
sighting distances in dist. Same units as dist. Values less than w.lo are
allowed in dist, but are ignored and their contribution to the likelihood is set to
NA in the output.

w.hi Scalar value of the largest observable distance. This is the right truncation of
sighting distances in dist. Same units as dist. Values greater than w.hi are
allowed in dist, but are ignored and their contribution to the likelihood is set to
NA in the output.

series A string specifying the type of expansion to use. Currently, valid values are
’simple’, ’hermite’, and ’cosine’; but, see dfuncEstim about defining other se-
ries.

expansions A scalar specifying the number of terms in series. Depending on the series,
this could be 0 through 5. The default of 0 equates to no expansion terms of any
type.

scale Logical scalar indicating whether or not to scale the likelihood so it integrates to
1. This parameter is used to stop recursion in other functions. If scale equals
TRUE, a numerical integration routine (integration.constant) is called, which
in turn calls this likelihood function again with scale = FALSE. Thus, this rou-
tine knows when its values are being used to compute the likelihood and when
its value is being used to compute the constant of integration. All user defined
likelihoods must have and use this parameter.

pointSurvey Boolean. TRUE if dist is point transect data, FALSE if line transect data.

Details

The negative exponential likelihood is

f(x|a) = exp(−ax)

where a is a slope parameter to be estimated.

Expansion Terms: If the number of expansions = k (k > 0), the expansion function specified by
series is called (see for example cosine.expansion). Assuming hij(x) is the jth expansion term
for the ith distance and that c1, c2, . . . , ckare (estimated) coefficients for the expansion terms, the
likelihood contribution for the ith distance is,

f(x|a, b, c1, c2, . . . , ck) = f(x|a, b)(1 +
k∑

j=1

cjhij(x)).

62 perpDists

Value

A numeric vector the same length and order as dist containing the likelihood contribution for
corresponding distances in dist. Assuming L is the returned vector from one of these functions, the
full log likelihood of all the data is -sum(log(L), na.rm=T). Note that the returned likelihood value
for distances less than w.lo or greater than w.hi is NA, and thus it is prudent to use na.rm=TRUE
in the sum. If scale = TRUE, the integral of the likelihood from w.lo to w.hi is 1.0. If scale =
FALSE, the integral of the likelihood is arbitrary.

See Also

dfuncEstim, halfnorm.like, uniform.like, hazrate.like, Gamma.like

Examples

Not run:
set.seed(238642)
x <- seq(0, 100, length=100)

Plots showing effects of changes in parameter Beta
plot(x, negexp.like(0.01, x), type="l", col="red")
plot(x, negexp.like(0.05, x), type="l", col="blue")

Estimate 'negexp' distance function
Beta <- 0.01
x <- rexp(1000, rate=Beta)
dfunc <- dfuncEstim(x~1, likelihood="negexp")
plot(dfunc)

End(Not run)

perpDists Compute off-transect distances from sighting distances and angles

Description

Computes off-transect (also called ’perpendicular’) distances from measures of sighting distance
and sighting angle.

Usage

perpDists(sightDist, sightAngle, data)

Arguments

sightDist Character, name of column in data that contains the observed or sighting dis-
tances from the observer to the detected objects.

plot.dfunc 63

sightAngle Character, name of column in data that contains the observed or sighting an-
gles from the line transect to the detected objects. Angles must be measured in
degrees.

data data.frame object containing sighting distance and sighting angle.

Details

If observers recorded sighting distance and sighting angle (as is often common in line transect sur-
veys), use this function to convert to off-transect distances, the required input data for F.dfunc.estim.

Value

A vector of off-transect (or perpendicular) distances. Units are the same as sightDist.

References

Buckland, S.T., Anderson, D.R., Burnham, K.P. and Laake, J.L. 1993. Distance Sampling: Esti-
mating Abundance of Biological Populations. Chapman and Hall, London.

See Also

dfuncEstim

Examples

Load the example dataset of sparrow detections from package
data(sparrowDetectionData)
Compute perpendicular, off-transect distances from the observer's sight distance and angle
sparrowDetectionData$perpDist <- perpDists(sightDist="sightdist", sightAngle="sightangle",

data=sparrowDetectionData)

plot.dfunc plot.dfunc - Plot method for distance (detection) functions

Description

Plot method for objects of class ’dfunc’. Objects of class ’dfunc’ are estimated distance functions
produced by dfuncEstim.

Usage

S3 method for class 'dfunc'
plot(
x,
include.zero = FALSE,
nbins = "Sturges",
newdata = NULL,
legend = TRUE,

64 plot.dfunc

vertLines = TRUE,
plotBars = TRUE,
density = -1,
angle = 45,
xlab = NULL,
ylab = NULL,
border = TRUE,
col = "grey85",
col.dfunc = NULL,
lty.dfunc = NULL,
lwd.dfunc = NULL,
...

)

Arguments

x An estimated distance function resulting from a call to dfuncEstim.

include.zero Boolean value specifying whether to include 0 on the x-axis of the plot. A value
of TRUE will include 0 on the left hand end of the x-axis regardless of the range
of distances. A value of FALSE will plot only the input distance range (w.lo to
w.hi).

nbins Internally, this function uses hist to compute histogram bars for the plot. This
argument is the breaks argument to hist. This can be either a vector giving
the breakpoints between bars, the suggested number of bars (a single number),
a string naming an algorithm to compute the number of bars, or a function to
compute the number of bars. See hist for all options.

newdata Data frame similar to the newdata parameter to lm containing new values for
covariates in the distance function. One distance function is computed and plot-
ted for each row in the data frame. If newdata is NULL, the routine computes
the mean of all numeric covariates in the distance function and the mode of all
factor covariates in the distance function. The new mean and mode vector is
used to predict and plot a distance function.

legend Logical scalar for whether to include a legend. If TRUE, a legend will be in-
cluded on the plot detailing the covariate values use to generate the plot.

vertLines Logical scalar specifying whether to plot vertical lines at w.lo and w.hi from 0
to the distance function.

plotBars Logical scalar for whether to plot the histogram of distances behind the distance
function. If FALSE, no histogram is plotted, only the distance function line(s).

density If plotBars=TRUE, a vector giving the density of shading lines, in lines per inch,
for the bars underneath the distance function, repeated as necessary to exceed
the number of bars. Values of NULL or a number strictly less than 0 mean solid
fill using colors from parameter col. If density = 0, bars are not filled and only
the borders are rendered. If density >0, bars are shaded with colors and angles
from parameters col and angle.

angle When density is >0, the slope of bar shading lines, given as an angle in degrees
(counter-clockwise), repeated as necessary to exceed the number of bars.

plot.dfunc 65

xlab Label for the x-axis

ylab Label for the y-axis

border The color of bar borders when bars are plotted, repeated as necessary to exceed
the number of bars. A value of NA or FALSE means no borders. If bars are
shaded with lines (i.e., density>0), border = TRUE uses the same color for the
border as for the shading lines. Otherwise, fill color or shaded line color are
specified in col while border color is specified in border.

col A vector of bar fill colors or line colors when bars are drawn and density !=
0, repeated as necessary to exceed the number of bars. Also used for the bar
borders when border = TRUE.

col.dfunc Color of the distance function(s). If only one distance function (one line) is
being plotted, the default color is "red". If covariates or newdata are present,
the default value uses graphics::rainbow(n), where n is the number of plotted
distance functions. Otherwise, col.dfunc is replicated to the required length.
Plot all distance functions in the same color by setting col.dfunc to a scalar.
Plot blue-red pairs of distance functions by setting col.dfunc = c("blue",
"red"). Etc.

lty.dfunc Line type of the distance function(s). If covariates or newdata is present, the
default uses line types to 1:n, where n is the number of plotted distance func-
tions. Otherwise, lty.dfunc is replicated to the required length. Plot solid
lines by specifying lty.dfunc = 1. Plot solid-dashed line pairs by specifying
lty.dfunc = c(1,2). Etc.

lwd.dfunc Line width of the distance function(s), replicated to the required length. Default
is 2 for all lines.

... When bars are plotted, this routine uses graphics::barplot to set up the plot-
ting region and plot bars. When bars are not plotted, this routine sets up the
plot with graphics::plot. . . . can be any other argument to barplot or plot
EXCEPT width, ylim, xlim, density, angle, and space.

Details

If plotBars is TRUE, a scaled histogram is plotted and the estimated distance function is plotted
over the top of it. When bars are plotted, this routine uses graphics::barplot for setting up the
initial plotting region and most parameters to graphics::barplot can be specified (exceptions
noted above in description of ’. . . ’).

The form of the likelihood and any series expansions is printed in the main title (overwrite this with
main="<my title>"). Convergence of the distance function is checked. If the distance function did
not converge, a warning is printed over the top of the histogram. If one or more parameter estimates
are at their limits (likely indicating non-convergence or poor fit), another warning is printed.

Value

The input distance function is returned, with two additional components than can be used to recon-
struct the plotted bars. To obtain values of the plotted distance functions, use predict with type =
"distances". The additional components are:

barHeights A vector containing the scaled bar heights drawn on the plot.

66 plot.dfunc

barWidths A vector or scaler of the bar widths drawn on the plot, with measurement units.

Re-plot the bars with barplot(return$barHeights, width = return$barWidths).

See Also

dfuncEstim, print.dfunc, print.abund

Examples

set.seed(87654)
x <- rnorm(1000, mean=0, sd=20)
x <- x[x >= 0]
x <- units::set_units(x, "ft")
dfunc <- dfuncEstim(x~1, likelihood="halfnorm")
plot(dfunc)
plot(dfunc, nbins=25)

showing effects of plot params
plot(dfunc

, col=c("red","blue","orange")
, border="black"
, xlab="Off-transect distance"
, ylab="Prob"
, vertLines = FALSE
, main="Showing plot params")

plot(dfunc
, col="wheat"
, density=30
, angle=c(-45,0,45)
, cex.axis=1.5
, cex.lab=2
, ylab="Probability")

plot(dfunc
, col=c("grey","lightgrey")
, border=NA)

plot(dfunc
, col="grey"
, border=0
, col.dfunc="blue"
, lty.dfunc=2
, lwd.dfunc=4
, vertLines=FALSE)

plot(dfunc
, plotBars=FALSE
, cex.axis=1.5
, col.axis="blue")

rug(dfunc$detections$dist)

predict.dfunc 67

Plot showing f(0)
hist(dfunc$detections$dist

, n = 40
, border = NA
, prob = TRUE)

x <- seq(dfunc$w.lo, dfunc$w.hi, length=200)
y <- predict(dfunc, type="dfunc", distances = x)
lines(x, c(y)/attr(y, "scaler"))
c(attr(y,"scaler") / y[1], ESW(dfunc)) # 1/f(0) = ESW

Covariates: detection by observer
data(sparrowDetectionData)
data(sparrowSiteData)
dfuncObs <- dfuncEstim(formula = dist ~ observer + groupsize(groupsize)

, likelihood = "hazrate"
, detectionData = sparrowDetectionData
, siteData = sparrowSiteData)

plot(dfuncObs
, newdata = data.frame(observer = levels(sparrowSiteData$observer))
, vertLines = FALSE
, lty = c(1,1)
, col.dfunc = heat.colors(length(levels(sparrowSiteData$observer)))
, col = c("grey","lightgrey")
, border=NA
, main="Detection by observer")

predict.dfunc Predict method for dfunc objects

Description

Predict likelihood parameters for distance function objects

Usage

S3 method for class 'dfunc'
predict(object, newdata = NULL, type = c("parameters"), distances = NULL, ...)

Arguments

object An estimated dfunc object. See dfuncEstim.

newdata A data frame containing new values of the covariates at which predictions are
to be computed. If newdata is NULL, predictions are made at values of the
observed covariates and results in one prediction (either parameters or distance
function, see parameter type) for every observed distance. If newdata is not
NULL and the model does not contains covariates, this routine returns one pre-
diction (either parameters or distance function) for each row in newdata, but
columns and values in newdata are ignored.

68 predict.dfunc

type The type of predictions desired.

• If type = "parameters": Return predicted parameters of the likelihood
function, one value for each observation (row) in newdata. If newdata is
NULL, return one predicted parameter value for every detection in object$detections.

• If type is not "parameters": Return scaled distance functions. Distance
functions are evaluated at the distances specified in distances. The num-
ber of distance functions returned depends on newdata and whether object
contains covariates:

– If object does NOT contain covariates, the distance function does not
vary (by covariate) and only one distance function will be returned,
even if newdata is specified.

– If object contains covariates, one distance function will be returned
for each observation (row) in newdata. If newdata is NULL, one dis-
tance function will be returned for every detection in object$detections.

If object is a smoothed distance function, it does not have parameters and this
routine will always return a scaled distance function. That is, type = "parame-
ters" when object is smoothed does not make sense and the smoothed distance
function estimate will be returned.

distances A vector of distances when distance functions are requested. distances must
have measurement units. Any distances outside the observation strip (object$w.lo
to object$w.hi) are discarded. If distances is NULL, this routine uses a se-
quence of 200 evenly spaced distances between object$w.lo and object$w.hi,
inclusive

... Included for compatibility with generic predict methods.

Value

A matrix containing one of two types of predictions:

• If type is "parameters", the returned matrix contains predicted likelihood parameters. The
extent of the first dimension (rows) in the returned matrix is equal to either the number of
detection distances in object$detections or number of rows in newdata. The returned
matrix’s second dimension (columns) is the number of parameters in the likelihood plus the
number of expansion terms. Without expansion terms, the number of columns in the returned
matrix is either 1 or 2 depending on the likelihood (e.g., halfnorm has one parameter, hazrate
has two). See the help for each likelihoods to interpret the returned parameter values.

• If type is not "parameters", the returned matrix contains scaled distance functions. The
extent of the first dimension (rows) is either the number of distances specified in distance or
200 if distances is not specified. The extent of the second dimension (columns) is:

– 1: if object does NOT contain covariates.
– the number of detections: if object contains covariates and newdata is NULL.
– the number of rows in newdata: if object contains covariates and newdata is specified.

All distance functions in columns of the return are scaled to object$g.x.scale at object$x.scl.
When type is not "parameters", the returned matrix has additional attributes containing the
distances at which the functions are scaled and ESW’s. attr(return, "x0") is the vector
of distances at which each distance function in <return> is scaled. i.e., the vector of x.scl.

print.abund 69

attr(return, "scaler") is a vector scaling factors corresponding to each distance function
in return. i.e., the vector of 1/f(x.scl) where f() is the unscaled distance function. If
object contains line transects, attr(return, "scaler") is a vector of ESW corresponding
to each distance function.

See Also

halfnorm.like, negexp.like, uniform.like, hazrate.like, Gamma.like

Examples

data(sparrowDetectionData)
data(sparrowSiteData)
No covariates
dfuncObs <- dfuncEstim(formula = dist ~ 1

, detectionData = sparrowDetectionData
, w.hi = units::as_units(100, "m"))

predict(dfuncObs)
values in newdata ignored because no covariates
predict(dfuncObs, newdata = data.frame(x = 1:5))

predict(dfuncObs, type = "dfunc") # one function

d <- units::set_units(c(0, 20, 40), "ft")
predict(dfuncObs, distances = d, type = "dfunc")

Covariates
dfuncObs <- dfuncEstim(formula = dist ~ observer

, detectionData = sparrowDetectionData
, siteData = sparrowSiteData
, w.hi = units::as_units(100, "m"))

predict(dfuncObs) # 356 X 1

Observers <- data.frame(observer = levels(sparrowSiteData$observer))
predict(dfuncObs, newdata = Observers) # 5 X 1

predict(dfuncObs, type = "dfunc") # 200 X 356
predict(dfuncObs, newdata = Observers, type = "dfunc") # 200 X 5
predict(dfuncObs, newdata = Observers, distances = d, type = "dfunc") # 3 X 5

print.abund Print abundance estimates

Description

Print an object of class c("abund","dfunc") produced by abundEstim.

70 print.dfunc

Usage

S3 method for class 'abund'
print(x, ...)

Arguments

x An object output by abundEstim. This is a distance function object augmented
with abundance estimates, and has class c("abund", "dfunc").

... Included for compatibility to other print methods. Ignored here.

Value

0 is invisibly returned

See Also

dfuncEstim, abundEstim, summary.dfunc, print.dfunc, summary.abund

Examples

Load example sparrow data (line transect survey type)
data(sparrowDetectionData)
data(sparrowSiteData)

Fit half-normal detection function
dfunc <- dfuncEstim(formula=dist ~ 1 + offset(groupsize)

, detectionData=sparrowDetectionData)

Estimate abundance given a detection function
Note: a person should do more than R=20 bootstrap iterations
fit <- abundEstim(dfunc

, detectionData = sparrowDetectionData
, siteData = sparrowSiteData
, area = units::set_units(4105, "km^2")
, ci = NULL)

print(fit)

print.dfunc Print a distance function object

Description

Print method for distance functions produced by dfuncEstim, which are of class dfunc.

Usage

S3 method for class 'dfunc'
print(x, ...)

RdistanceControls 71

Arguments

x An estimated distance function resulting from a call to dfuncEstim.

... Included for compatibility with other print methods. Ignored here.

Value

The input distance function (x) is returned invisibly.

See Also

dfuncEstim, plot.dfunc, print.abund, summary.dfunc

Examples

Load example sparrow data (line transect survey type)
data(sparrowDetectionData)

Fit half-normal detection function
dfunc <- dfuncEstim(formula=dist~1,

detectionData=sparrowDetectionData)

dfunc

RdistanceControls Control parameters for Rdistance optimization.

Description

Returns a list of optimization controls used in Rdistance and provides a way to change them if
needed.

Usage

RdistanceControls(
optimizer = "nlminb",
evalMax = 2000,
maxIters = 1000,
likeTol = 1e-08,
coefTol = 1.5e-08,
hessEps = 1e-08,
requireUnits = TRUE,
maxBSFailPropForWarning = 0.2,
contrasts = NULL

)

72 RdistanceControls

Arguments

optimizer A string specifying the optimizer to use. Results vary between optimizers, so
switching algorithms sometimes makes a poorly behaved distance function con-
verge. The valid values are "optim" which uses optim::optim, and "nlminb"
which uses stats:nlminb. The authors have had better luck with "nlminb"
than "optim" and "nlminb" runs noticeably faster. Problems with solutions near
parameter boundaries may require use of "optim".

evalMax The maximum number of objective function evaluations allowed.

maxIters The maximum number of optimization iterations allowed.

likeTol The maximum change in the likelihood (the objective) between iterations that is
tolerated during optimization. If the likelihood changes by less than this amount,
optimization stops and a solution is declared.

coefTol The maximum change in the model coefficients between iterations that is toler-
ated during optimization. If the sum of squared coefficient differences changes
by less than this amount between iterations, optimization stops and a solution is
declared.

hessEps A vector of parameter distances used during computation of numeric second
derivatives. Should have length 1 or the number of parameters in the model. See
function secondDeriv.

requireUnits A logical specifying whether measurement units are required on distances and
areas. If TRUE, measurement units are required on off-transect and radial dis-
tances in the input data frame. Likewise, measurement units are required on tran-
sect length and study area size. Assign units with statement like units(detectionDf$dist)
<- "m" or units(df$transectDf) <- "km". Measurement units do not need to
be the same. All units are converted appropriately during internal computations.
Rdistance recognizes units listed in units::valid_udunits().

maxBSFailPropForWarning

The proportion of bootstrap iterations that can fail without a warning. If the
proportion of bootstrap iterations that did not converge exceeds this parameter,
a warning about the validity of CI’s is issued in the print method for abundance
objects.

contrasts A list, whose entries are values (numeric matrices, functions or character strings
naming functions) to be used as replacement values for the default contrasts
function and whose names are the names of columns of data containing factors.
There are several ways to change the contrasts used for factors in Rdistance
because all methods used in linear models (lm) work. To summarize contrast
methods in R, if this parameter is NULL, Rdistance uses the global contrasts
specified in options(). To change the global contrasts, use a statement like
options(contrasts = c(unordered = "contr.SAS",ordered = "contr.poly")).
One can also set contrasts for a factor using contrasts(a) (e.g., contrasts(a)
<- "contr.sum") Lastly, one can set this parameter to a list that explicitely
states the non-global contrasts to use for which factors in the Rdistance model.
For example, list(a = "contr.helmert") will use Helmert contrasts for a
and the global contrast option for all other factors. The built-in R contrast
functions are "contr.treatment", "contr.helmert", "contr.SAS", "contr.sum", and
"contr.poly".

secondDeriv 73

Value

A list containing named components for each of the controls. This list has the same components as
this function has input parameters.

Examples

increase number of iterations
RdistanceControls(maxIters=2000)

change optimizer and decrease tolerance
RdistanceControls(optimizer="optim", likeTol=1e-6)

secondDeriv Numeric second derivatives

Description

Computes numeric second derivatives (hessian) of an arbitrary multidimensional function at a par-
ticular location.

Usage

secondDeriv(x, FUN, eps = 1e-08, ...)

Arguments

x The location (a vector) where the second derivatives of FUN are desired.

FUN An R function for which the second derivatives are sought. This must be a
function of the form FUN <- function(x, ...)... where x is a vector of variable
parameters to FUN at which to evaluate the 2nd derivative, and ... are additional
parameters needed to evaluate the function. FUN must return a single value
(scalar), the height of the surface above x, i.e., FUN evaluated at x.

eps A vector of small relative distances to add to x when evaluating derivatives.
This determines the ’dx’ of the numerical derivatives. That is, the function is
evaluated at x, x+dx, and x+2*dx, where dx = x*eps^0.25, in order to compute
the second derivative. eps defaults to 1e-8 for all dimensions which equates to
setting dx to one percent of each x (i.e., by default the function is evaluate at x,
1.01*x and 1.02*x to compute the second derivative).
One might want to change eps if the scale of dimensions in x varies wildly (e.g.,
kilometers and millimeters), or if changes between FUN(x) and FUN(x*1.01)
are below machine precision. If length of eps is less than length of x, eps is
replicated to the length of x.

... Any arguments passed to FUN.

74 simple.expansion

Details

This function uses the "5-point" numeric second derivative method advocated in numerous numeri-
cal recipe texts. During computation of the 2nd derivative, FUN must be capable of being evaluated
at numerous locations within a hyper-ellipsoid with cardinal radii 2*x*(eps)^0.25 = 0.02*x at the
default value of eps.
A handy way to use this function is to call an optimization routine like nlminb with FUN, then
call this function with the optimized values (solution) and FUN. This will yield the hessian at the
solution and this is can produce a better estimate of the variance-covariance matrix than using the
hessian returned by some optimization routines. Some optimization routines return the hessian
evaluated at the next-to-last step of optimization.
An estimate of the variance-covariance matrix, which is used in Rdistance, is solve(hessian)
where hessian is secondDeriv(<parameter estimates>, <likelihood>).

Examples

func <- function(x){-x*x} # second derivative should be -2
secondDeriv(0,func)
secondDeriv(3,func)

func <- function(x){3 + 5*x^2 + 2*x^3} # second derivative should be 10+12x
secondDeriv(0,func)
secondDeriv(2,func)

func <- function(x){x[1]^2 + 5*x[2]^2} # should be rbind(c(2,0),c(0,10))
secondDeriv(c(1,1),func)

simple.expansion Calculate simple polynomial expansion for detection function likeli-
hoods

Description

Computes simple polynomial expansion terms used in the likelihood of a distance analysis. More
generally, will compute polynomial expansions of any numeric vector.

Usage

simple.expansion(x, expansions)

Arguments

x In a distance analysis, x is a numeric vector of the proportion of a strip transect’s
half-width at which a group of individuals were sighted. If w is the strip transect
half-width or maximum sighting distance, and d is the perpendicular off-transect
distance to a sighted group (d ≤ w), x is usually d/w. More generally, x is a
vector of numeric values

expansions A scalar specifying the number of expansion terms to compute. Must be one of
the integers 1, 2, 3, or 4.

smu.like 75

Details

The polynomials computed here are:

• First term:

h1(x) = x4,

• Second term:

h2(x) = x6,

• Third term:

h3(x) = x8,

• Fourth term:

h4(x) = x10,

The maximum number of expansion terms computed is 4.

Value

A matrix of size length(x) X expansions. The columns of this matrix are the Hermite polynomial
expansions of x. Column 1 is the first expansion term of x, column 2 is the second expansion term
of x, and so on up to expansions.

See Also

dfuncEstim, cosine.expansion, hermite.expansion, and the discussion of user defined likeli-
hoods in dfuncEstim.

Examples

set.seed(883839)
x <- rnorm(1000) * 100
x <- x[0 < x & x < 100]
simp.expn <- simple.expansion(x, 4)

smu.like Smoothed likelihood function for distance analyses

Description

Computes the likelihood of sighting distances given a kernel smooth of the histogram.

76 smu.like

Usage

smu.like(
a,
dist,
covars = NULL,
w.lo = 0,
w.hi,
scale = TRUE,
series = NULL,
expansions = 0,
pointSurvey = FALSE

)

Arguments

a A data frame containing the smooth. This data frame must contain at least an
$x and $y components. These components are generally the output of function
density.

dist A numeric vector containing the observed distances.
covars Not used in smoothed distance functions. Included for compatibility with other

distance likelihoods in Rdistance.
w.lo Scalar value of the lowest observable distance. This is the left truncation of

sighting distances in dist. Same units as dist. Values less than w.lo are
allowed in dist, but are ignored and their contribution to the likelihood is set to
NA in the output.

w.hi Scalar value of the largest observable distance. This is the right truncation of
sighting distances in dist. Same units as dist. Values greater than w.hi are
allowed in dist, but are ignored and their contribution to the likelihood is set to
NA in the output.

scale Logical scalar indicating whether or not to scale the likelihood so it integrates to
1. This parameter is used to stop recursion in other functions. If scale equals
TRUE, a numerical integration routine (integration.constant) is called, which
in turn calls this likelihood function again with scale = FALSE. Thus, this rou-
tine knows when its values are being used to compute the likelihood and when
its value is being used to compute the constant of integration. All user defined
likelihoods must have and use this parameter.

series Not used in smoothed distance functions. Included for compatibility with other
distance likelihoods in Rdistance.

expansions Not used in smoothed distance functions. Included for compatibility with other
distance likelihoods in Rdistance.

pointSurvey Boolean. TRUE if distances in dist are radial from point transects, FALSE if
distances are perpendicular off-transect distances.

Details

The approx function is used to evaluate the smooth function at all sighting distances.

Distances outside the range w.lo to w.hi are set to NA and hence not included.

sparrowDetectionData 77

Value

A numeric vector the same length and order as dist containing the likelihood contribution (height
of the smoothed function) for all distances in dist. Assuming L is the vector returned by this
function, the negative log likelihood of the sighting distances is -sum(log(L), na.rm=T). Note
that the returned likelihood value for distances less than w.lo or greater than w.hi is NA, hence
na.rm=TRUE in the sum. If scale = TRUE, the area under the smoothed curve between w.lo and
w.hi is 1.0. If scale = FALSE, the integral of the smoothed curve is something else.

See Also

dfuncSmu, hazrate.like, uniform.like, negexp.like, halfnorm.like

Examples

set.seed(238642)
d <- units::set_units(abs(rnorm(100)), "in")
dfunc <- dfuncSmu(d~1)

L <- smu.like(a=dfunc$parameters,
dist=dfunc$detections$dist,
w.lo=dfunc$w.lo,
w.hi=dfunc$w.hi,
scale=TRUE)

-sum(log(L), na.rm=TRUE) # the negative log likelihood

sparrowDetectionData Brewer’s Sparrow detection data

Description

Detection data from line transect surveys for Brewer’s sparrow on 72 transects located on a 4105
km^2 study area in central Wyoming. Data were collected by Dr. Jason Carlisle of the Wyoming
Cooperative Fish & Wildlife Research Unit in 2012. Each transect was 500 meters long. See the
package vignettes for tutorials of the basic analysis.

Format

A data.frame containing 356 rows and 5 columns. Each row represents a detected group of sparrows.
Column descriptions:

1. siteID: Factor (72 levels), the site or transect where the detection was made.

2. groupsize: Number, the number of individuals within the detected group.

3. sightdist: Number, distance (m) from the observer to the detected group.

4. sightangle: Number, the angle (degrees) from the transect line to the detected group.

5. dist: Number, the perpendicular, off-transect distance (m) from the transect to the detected
group. This is the distance used in analysis. Calculated using perpDists.

78 sparrowSiteData

Source

The Brewer’s sparrow data are a subset of the data collected by Jason Carlisle and various field
technicians for his Ph.D. from the Department of Ecology, University of Wyoming, in 2017. This
portion of Jason’s work was funded by the Wyoming Game and Fish Department through agree-
ments with the University of Wyoming’s Cooperative Fish & Wildlife Research Unit (2012).

References

Carlisle, J.D. 2017. The effect of sage-grouse conservation on wildlife species of concern: implica-
tions for the umbrella species concept. Dissertation. University of Wyoming, Laramie, Wyoming,
USA.

Carlisle, J. D., and A. D. Chalfoun. 2020. The abundance of Greater Sage-Grouse as a proxy for the
abundance of sagebrush-associated songbirds in Wyoming, USA. Avian Conservation and Ecology
15(2):16. doi:10.5751/ACE01702150216

See Also

sparrowSiteData

sparrowSiteData Brewer’s Sparrow site data

Description

Site data from line transect surveys for Brewer’s sparrow on 72 transects located on a 4105 km^2
study area in central Wyoming. Data were collected by Dr. Jason Carlisle of the Wyoming Cooper-
ative Fish & Wildlife Research Unit in 2012. Each transect was 500 meters long. See the package
vignettes for tutorials of the basic analysis.

Format

A data.frame containing 72 rows and 8 columns. Each row represents a site (transect) surveyed.
Column descriptions:

1. siteID: Factor (72 levels), the site or transect surveyed.

2. length: Number, the length (m) of each transect.

3. observer: Factor (five levels), identity of the observer who surveyed the transect.

4. bare: Number, the mean bare ground cover (%) within 100 m of each transect.

5. herb: Number, the mean herbaceous cover (%) within 100 m of each transect.

6. shrub: Number, the mean shrub cover (%) within 100 m of each transect.

7. height: Number, the mean shrub height (cm) within 100 m of each transect.

8. shrubclass: Factor (two levels), shrub class is "Low"" when shrub cover is < 10%, "High"
otherwise.

https://doi.org/10.5751/ACE-01702-150216

summary.abund 79

Source

The Brewer’s sparrow data are a subset of the data collected by Jason Carlisle and various field
technicians for his Ph.D. from the Department of Ecology, University of Wyoming, in 2017. This
portion of Jason’s work was funded by the Wyoming Game and Fish Department through agree-
ments with the University of Wyoming’s Cooperative Fish & Wildlife Research Unit (2012).

References

Carlisle, J.D. 2017. The effect of sage-grouse conservation on wildlife species of concern: Implica-
tions for the umbrella species concept. Dissertation. University of Wyoming, Laramie, Wyoming,
USA.

Carlisle, J. D., and A. D. Chalfoun. 2020. The abundance of Greater Sage-Grouse as a proxy for the
abundance of sagebrush-associated songbirds in Wyoming, USA. Avian Conservation and Ecology
15(2):16. doi:10.5751/ACE01702150216

See Also

sparrowDetectionData

summary.abund Summarize abundance estimates

Description

Summarize an object of class c("abund","dfunc") that is output by abundEstim.

Usage

S3 method for class 'abund'
summary(
x,
criterion = "AICc",
maxBSFailPropForWarning = RdistanceControls()$maxBSFailPropForWarning,
...

)

Arguments

x An object output by abundEstim. This is a distance function object augmented
with abundance estimates, and has class c("abund", "dfunc").

criterion A string specifying the criterion to print. Must be one of "AICc" (the default),
"AIC", or "BIC". See AIC.dfunc for formulas.

maxBSFailPropForWarning

The proportion of bootstrap iterations that can fail without a warning. If the
proportion of bootstrap iterations that did not converge exceeds this parameter,
a warning about the validity of CI’s is issued and a diagnostic message printed.

https://doi.org/10.5751/ACE-01702-150216

80 summary.dfunc

Increasing this to a number greater than 1 will kill the warning, but ignoring
a large number of non-convergent bootstrap iterations may be a bad idea (i.e.,
validity of the CI is questionable).

... Included for compatibility to other print methods. Ignored here.

Details

The default summary method for class ’dfunc’ is called first, then the abundance estimates are
printed.

Value

0 is invisibly returned.

See Also

dfuncEstim, abundEstim, summary.dfunc, print.dfunc, print.abund

Examples

Load example sparrow data (line transect survey type)
data(sparrowDetectionData)
data(sparrowSiteData)

Fit half-normal detection function
dfunc <- dfuncEstim(formula=dist ~ 1 + offset(groupsize)

, detectionData=sparrowDetectionData)

Estimate abundance given the detection function
Note: do more than R=20 bootstrap iterations
fit <- abundEstim(dfunc

, detectionData = sparrowDetectionData
, siteData = sparrowSiteData
, area = units::set_units(4105, "km^2")
, R=20
, ci=0.95)

summary(fit)

summary.dfunc Summarize a distance function object

Description

A summary method for distance functions produced by dfuncEstim, which are of class dfunc.

summary.dfunc 81

Usage

S3 method for class 'dfunc'
summary(x, criterion = "AICc", ...)

Arguments

x An estimated distance function resulting from a call to dfuncEstim.

criterion A string specifying the criterion to print. Must be one of "AICc" (the default),
"AIC", or "BIC". See AIC.dfunc for formulas.

... Included for compatibility with other print methods. Ignored here.

Details

The call, coefficients of the distanced function, whether the estimation converged, and the likelihood
form are printed. The following quantities are then printed,

• ‘Strip’ : The left (w.lo) and right (w.hi) truncation values.

• ‘Effective strip width or detection radius’ : ESW or EDR as computed by effectiveDistance.

• ‘Probability of Detection’ : Probability of detecting a single target in the strip.

• ‘Scaling’ : The horizontal and vertical coordinates used to scale the distance function. Usu-
ally, the horizontal coordinate is 0 and the vertical coordinate is 1 (i.e., g(0) = 1).

• ‘Log likelihood’ : Value of the maximized log likelihood.

• ‘Criterion’ : Value of the specified fit criterion (AIC, AICc, or BIC).

The number of digits printed is controlled by options()$digits.

Value

The input distance function object (x) is invisibly returned with additional components:

• convMessage: The convergence message. If the distance function is smoothed, the conver-
gence message is NULL.

• effDistance: The ESW or EDR.

• pDetect: Probability of detection in the strip.

• AIC: AICc, AIC, or BIC of the fit, which ever was requested.

• coefficients: If the distance function has coefficients, the coefficient matrix with standard
errors, Z values, and p values. If the distance function is smoothed, it has no coefficients and
this component is NULL.

See Also

dfuncEstim, plot.dfunc, print.abund, print.abund

82 thrasherDetectionData

Examples

Load example sparrow data (line transect survey type)
data(sparrowDetectionData)

Fit half-normal detection function
dfunc <- dfuncEstim(formula=dist~1,

detectionData=sparrowDetectionData)

Print results
summary(dfunc)
summary(dfunc, criterion="BIC")

thrasherDetectionData Sage Thrasher detection data

Description

Point transect data collected in central Wyoming from 120 points surveyed for Sage Thrashers
by the Wyoming Cooperative Fish & Wildlife Research Unit in 2013. See package vignettes for
tutorials of the basic analysis.

Format

A data.frame containing 193 rows and 3 columns. Each row represents a detected group of thrash-
ers. Column descriptions:

1. siteID: Factor (120 levels), the site or point where the detection was made.

2. groupsize: Number, the number of individuals within the detected group.

3. dist: Number, the radial distance (m) from the transect to the detected group. This is the
distance used in analysis.

Source

The Sage Thrasher data are a subset of the data collected by Jason Carlisle and various field techni-
cians for his Ph.D. from the Department of Ecology, University of Wyoming, in 2017. This portion
of Jason’s work was funded by the Wyoming Game and Fish Department through agreements with
the University of Wyoming’s Cooperative Fish & Wildlife Research Unit (2012).

References

Carlisle, J.D. 2017. The effect of sage-grouse conservation on wildlife species of concern: implica-
tions for the umbrella species concept. Dissertation. University of Wyoming, Laramie, Wyoming,
USA.

Carlisle, J. D., A. D. Chalfoun, K. T. Smith, and J. L. Beck. 2018. Nontarget effects on songbirds
from habitat manipulation for Greater Sage-Grouse: Implications for the umbrella species concept.
The Condor: Ornithological Applications 120:439–455. doi:10.1650/CONDOR17200.1

https://doi.org/10.1650/CONDOR-17-200.1

thrasherSiteData 83

See Also

thrasherSiteData

thrasherSiteData thrasherSiteData - Sage Thrasher site data.

Description

Point transect data collected in central Wyoming from 120 points surveyed for Sage Thrashers
by the Wyoming Cooperative Fish & Wildlife Research Unit in 2013. See package vignettes for
tutorials of the basic analysis.

Format

A data.frame containing 120 rows and 6 columns. Each row represents a surveyed site (point).
Column descriptions:

1. siteID: Factor (120 levels), the site or point surveyed.

2. observer: Factor (six levels), identity of the observer who surveyed the point.

3. bare: Number, the mean bare ground cover (%) within 100 m of each point.

4. herb: Number, the mean herbaceous cover (%) within 100 m of each point.

5. shrub: Number, the mean shrub cover (%) within 100 m of each point.

6. height: Number, the mean shrub height (cm) within 100 m of each point.

Source

The Sage Thrasher data are a subset of data collected by Jason Carlisle and field technicians for
his Ph.D. from the Department of Ecology, University of Wyoming, in 2017. This portion of Ja-
son’s work was funded by the Wyoming Game and Fish Department through agreements with the
University of Wyoming’s Cooperative Fish & Wildlife Research Unit (2012).

References

Carlisle, J.D. 2017. The effect of sage-grouse conservation on wildlife species of concern: implica-
tions for the umbrella species concept. Dissertation. University of Wyoming, Laramie, Wyoming,
USA.

Carlisle, J. D., A. D. Chalfoun, K. T. Smith, and J. L. Beck. 2018. Nontarget effects on songbirds
from habitat manipulation for Greater Sage-Grouse: Implications for the umbrella species concept.
The Condor: Ornithological Applications 120:439–455. doi:10.1650/CONDOR17200.1

See Also

thrasherDetectionData

https://doi.org/10.1650/CONDOR-17-200.1

84 uniform.like

uniform.like uniform.like - Uniform distance likelihood

Description

Compute uniform-like distribution for distance functions. This function was present in Rdistance
version < 2.2.0. It has been replaced by the more appropriately named logistic.like.

Usage

uniform.like(
a,
dist,
covars = NULL,
w.lo = 0,
w.hi = max(dist),
series = "cosine",
expansions = 0,
scale = TRUE,
pointSurvey = FALSE

)

Arguments

a A vector of likelihood parameter values. Length and meaning depend on whether
covariates and expansions are present as follows:

• If no covariates and no expansions: a = [a, b] (see Details)
• If no covariates and k expansions: a = [a, b, e1, ..., ek]
• If p covariates and no expansions: a = [a, b, b1, ..., bp]
• If p covariates and k expansions: a = [a, b, b1, ..., bp, e1, ..., ek]

dist A numeric vector containing observed distances with measurement units.

covars Data frame containing values of covariates at each observation in dist.

w.lo Scalar value of the lowest observable distance, with measurement units. This is
the left truncation sighting distance. Values less than w.lo are allowed in dist,
but are ignored and their likelihood value is set to NA in the output.

w.hi Scalar value of the largest observable distance, with measurement units. This is
the right truncation sighting distance. Values greater than w.hi are allowed in
dist, but are ignored and their likelihood value is set to NA in the output.

series A string specifying the type of expansion to use. Currently, valid values are
’simple’, ’hermite’, and ’cosine’; but, see dfuncEstim about defining other se-
ries.

expansions A scalar specifying the number of terms in series. Depending on the series,
this could be 0 through 5. The default of 0 equates to no expansion terms of any
type.

uniform.start.limits 85

scale Logical scalar indicating whether or not to scale the likelihood into a density
function, i.e., so that it integrates to 1. This parameter is used to stop recur-
sion in other functions. If scale equals TRUE, a numerical integration routine
(integration.constant) is called, which in turn calls this likelihood function
again with scale = FALSE. Thus, this routine knows when its values are being
used to compute the likelihood and when its values are being used to compute
the constant of integration. All user defined likelihoods must have and use this
parameter.

pointSurvey Boolean. TRUE if dist is point transect data, FALSE if line transect data.

Value

A numeric vector the same length and order as dist containing the likelihood contribution for
corresponding distances in dist. Assuming L is the returned vector, the log likelihood of all data
is -sum(log(L), na.rm=T). Note that the returned likelihood value for distances less than w.lo or
greater than w.hi is NA, and thus it is essential to use na.rm=TRUE in the sum. If scale = TRUE, the
integral of the likelihood from w.lo to w.hi is 1.0. If scale = FALSE, the integral of the likelihood
is arbitrary.

Expansion Terms

If expansions = k (k > 0), the expansion function specified by series is called (see for example
cosine.expansion). Assuming hij(x) is the jth expansion term for the ith distance and that
c1, c2, . . . , ck are (estimated) coefficients, the likelihood contribution for the ith distance is,

f(x|a, b, c1, c2, . . . , ck) = f(x|a, b)(1 +
k∑

j=1

cjhij(x)).

uniform.start.limits uniform.start.limits - Start and limit values for uniform distance func-
tion

Description

DEPRECATED.: Starting values and limits for parameters of the uniform distance function.

Usage

uniform.start.limits(dist, covars, expansions, w.lo, w.hi)

Arguments

dist A numeric vector containing observed distances with measurement units.

covars Data frame containing values of covariates at each observation in dist.

expansions A scalar specifying the number of terms in series. Depending on the series,
this could be 0 through 5. The default of 0 equates to no expansion terms of any
type.

86 uniform.start.limits

w.lo Scalar value of the lowest observable distance, with measurement units. This is
the left truncation sighting distance. Values less than w.lo are allowed in dist,
but are ignored and their likelihood value is set to NA in the output.

w.hi Scalar value of the largest observable distance, with measurement units. This is
the right truncation sighting distance. Values greater than w.hi are allowed in
dist, but are ignored and their likelihood value is set to NA in the output.

Details

This function is usually called within F.start.limits.

Value

A list containing the following components:

• start : a vector of starting values

• lowlimit : a vector of lower limits (can be -Inf)

• highlimit : a vector of upper limits (can be Inf)

• nms : a vector containing names of the parameters

Index

∗ datasets
sparrowDetectionData, 77
sparrowSiteData, 78
thrasherDetectionData, 82
thrasherSiteData, 83

∗ modeling
EDR, 29
effectiveDistance, 31
ESW, 34

∗ models
cosine.expansion, 16
F.nLL, 39
F.start.limits, 41
Gamma.like, 43
halfnorm.like, 47
hazrate.like, 49
integration.constant, 52
logistic.like, 57
negexp.like, 60
plot.dfunc, 63
print.abund, 69
print.dfunc, 70
simple.expansion, 74
smu.like, 75
summary.abund, 79
summary.dfunc, 80

∗ model
abundEstim, 5
AIC.dfunc, 10
autoDistSamp, 11
coef.dfunc, 14
dfuncEstim, 17
dfuncSmu, 24
estimateN, 32
F.double.obs.prob, 35
F.gx.estim, 36
F.maximize.g, 38
hermite.expansion, 51

∗ package

Rdistance-package, 3

abundEstim, 3, 4, 5, 13, 14, 22, 23, 28, 29, 33,
36, 70, 80

AIC, 15
AIC.dfunc, 10, 13, 79, 81
approx, 76
autoDistSamp, 3, 4, 9, 11, 23, 29

bcv, 25
bw.nrd, 25
bw.nrd0, 25
bw.SJ, 25

coef, 11
coef.dfunc, 14
colorize, 15
cosine.expansion, 3, 16, 48, 50, 52, 59, 61,

75, 85

density, 25, 76
dfuncEstim, 3, 4, 7, 9, 11, 14, 15, 17, 17,

29–31, 33, 35, 36, 38–40, 42, 44, 47,
48, 50–52, 54, 56, 58, 59, 61–63, 66,
70, 71, 75, 80, 81, 84

dfuncSmu, 3, 24, 77
distance (Rdistance-package), 3

EDR, 29, 31, 35
effectiveDistance, 30, 31, 35
estimateN, 32
ESW, 30, 31, 34

F.double.obs.prob, 35
F.gx.estim, 36
F.maximize.g, 38
F.nLL, 39
F.start.limits, 41

Gamma.like, 3, 13, 43, 48, 51, 59, 62, 69
Gamma.start.limits, 45

87

88 INDEX

getDfuncModelFrame, 46

halfnorm.like, 3, 23, 44, 47, 51, 54, 59, 62,
69, 77

hazrate.like, 3, 44, 48, 49, 59, 62, 69, 77
hermite.expansion, 3, 17, 51, 75
hist, 64

integration.constant, 44, 48, 50, 52, 58,
61, 76, 85

isUnitless, 54

likeParamNames, 55
line-transect (Rdistance-package), 3
lines.dfunc, 56
lm, 56, 64
logistic.like, 57, 84
logistic.start.limits, 59

negexp.like, 3, 44, 48, 51, 59, 60, 69, 77

perpDists, 3, 62, 77
plot.dfunc, 56, 63, 71, 81
point-transect (Rdistance-package), 3
predict.dfunc, 67
print.abund, 56, 66, 69, 71, 80, 81
print.dfunc, 66, 70, 70, 80

Rdistance (Rdistance-package), 3
Rdistance-package, 3
RdistanceControls, 7, 20, 27, 32, 71

secondDeriv, 72, 73
simple.expansion, 3, 17, 52, 74
smu.like, 75
sparrowDetectionData, 4, 6, 18, 25, 77, 79
sparrowSiteData, 4, 78, 78
summary.abund, 70, 79
summary.dfunc, 70, 71, 80, 80

thrasherDetectionData, 4, 82, 83
thrasherSiteData, 4, 83, 83

ucv, 25
uniform.like, 3, 40, 44, 48, 51, 62, 69, 77, 84
uniform.start.limits, 85

width.SJ, 25

	Rdistance-package
	abundEstim
	AIC.dfunc
	autoDistSamp
	coef.dfunc
	colorize
	cosine.expansion
	dfuncEstim
	dfuncSmu
	EDR
	effectiveDistance
	estimateN
	ESW
	F.double.obs.prob
	F.gx.estim
	F.maximize.g
	F.nLL
	F.start.limits
	Gamma.like
	Gamma.start.limits
	getDfuncModelFrame
	halfnorm.like
	hazrate.like
	hermite.expansion
	integration.constant
	isUnitless
	likeParamNames
	lines.dfunc
	logistic.like
	logistic.start.limits
	negexp.like
	perpDists
	plot.dfunc
	predict.dfunc
	print.abund
	print.dfunc
	RdistanceControls
	secondDeriv
	simple.expansion
	smu.like
	sparrowDetectionData
	sparrowSiteData
	summary.abund
	summary.dfunc
	thrasherDetectionData
	thrasherSiteData
	uniform.like
	uniform.start.limits
	Index

