dfuncEstim
examplesFollowing is a series of
dfuncEstim
calls that show the calling parameters for
popular distance sampling options.
## Rdistance (version 3.1.2)
dfunc <- dfuncEstim(formula = dist ~ 1
, detectionData = sparrowDetectionData
, w.hi = units::set_units(100, "m"))
dfunc
## Call: dfuncEstim(formula = dist ~ 1, detectionData =
## sparrowDetectionData, w.hi = units::set_units(100, "m"))
## Coefficients:
## Estimate SE z p(>|z|)
## Sigma 46.3587 2.549913 18.1805 7.365789e-74
dfunc <- dfuncEstim(formula = dist ~ groupsize(groupsize)
, detectionData = sparrowDetectionData
, w.hi = units::set_units(100, "m"))
dfunc
## Call: dfuncEstim(formula = dist ~ groupsize(groupsize), detectionData =
## sparrowDetectionData, w.hi = units::set_units(100, "m"))
## Coefficients:
## Estimate SE z p(>|z|)
## Sigma 46.3587 2.549913 18.1805 7.365789e-74
Increase the maximum number of iterations if distance function
convergence is an issue. The observer
covariate is constant
within transects and appears in the site data frame
(sparrowSiteData
), so the site data frame must be included
in the call to dfuncEstim
. Otherwise, the site data frame
is not needed until abundance is estimated (in
abundEstim
).
dfuncObs <- dfuncEstim(formula = dist ~ observer
, detectionData = sparrowDetectionData
, siteData = sparrowSiteData
, w.hi = units::set_units(100, "m")
, control=RdistanceControls(maxIter=1000))
dfuncObs
## Call: dfuncEstim(formula = dist ~ observer, detectionData =
## sparrowDetectionData, siteData = sparrowSiteData, w.hi =
## units::set_units(100, "m"), control = RdistanceControls(maxIter =
## 1000))
## Coefficients:
## Estimate SE z p(>|z|)
## (Intercept) 3.9157276 0.1325055 29.5514280 6.295424e-192
## observerobs2 0.0368698 0.2121217 0.1738144 8.620113e-01
## observerobs3 -0.0508131 0.1747992 -0.2906941 7.712853e-01
## observerobs4 -0.2904761 0.1718375 -1.6904117 9.094923e-02
## observerobs5 -0.1025525 0.1758776 -0.5830903 5.598325e-01
Group sizes do not influence the estimated distance function. Only
distance to the group is used. But, group sizes are associated with
individual detections and are used to estimate abundance in function
abundEstim
. If abundance will be estimate and group sizes
vary, Rdistance
requires specification of a group size
variable in the call to dfuncEstim
. Here,
groupsize
is a column in the detection data frame
and group sizes are specified using groupsize()
in the
formula.
dfuncObs <- dfuncEstim(formula = dist ~ observer + groupsize(groupsize)
, likelihood = "hazrate"
, detectionData = sparrowDetectionData
, siteData = sparrowSiteData
, w.hi = units::set_units(100, "m"))
dfuncObs
## Call: dfuncEstim(formula = dist ~ observer + groupsize(groupsize),
## detectionData = sparrowDetectionData, siteData = sparrowSiteData,
## likelihood = "hazrate", w.hi = units::set_units(100, "m"))
## Coefficients:
## Estimate SE z p(>|z|)
## (Intercept) 3.86255658 0.1796040 21.5059637 1.369123e-102
## observerobs2 0.06544074 0.2884028 0.2269074 8.204957e-01
## observerobs3 0.05675877 0.2383286 0.2381534 8.117621e-01
## observerobs4 -0.39338347 0.2242432 -1.7542718 7.938394e-02
## observerobs5 -0.09897167 0.2135483 -0.4634627 6.430327e-01
## k 2.26440055 0.4846781 4.6719680 2.983274e-06
Right truncation at 100 meters, left truncation at 20 meters. If
x.scl
is not specified as greater than w.lo
, a
warning is issued.
dfunc <- dfuncEstim(formula = dist ~ observer + groupsize(groupsize)
, likelihood = "hazrate"
, detectionData = sparrowDetectionData
, siteData = sparrowSiteData
, w.lo = units::set_units(20, "m")
, x.scl = units::set_units(20, "m")
, w.hi = units::set_units(100, "m"))
dfunc
## Call: dfuncEstim(formula = dist ~ observer + groupsize(groupsize),
## detectionData = sparrowDetectionData, siteData = sparrowSiteData,
## likelihood = "hazrate", w.lo = units::set_units(20, "m"), w.hi =
## units::set_units(100, "m"), x.scl = units::set_units(20, "m"))
## Coefficients:
## Estimate SE z p(>|z|)
## (Intercept) 3.8931772 0.2295965 16.95660259 1.720067e-64
## observerobs2 0.4785896 0.3884430 1.23207169 2.179223e-01
## observerobs3 0.2821896 0.2923237 0.96533261 3.343782e-01
## observerobs4 -3.1637197 47.3803897 -0.06677277 9.467626e-01
## observerobs5 -0.3483488 0.3284465 -1.06059519 2.888739e-01
## k 2.2649669 0.3463928 6.53872489 6.204553e-11
Specify g(0) at the
intercept by setting g.x.scl
. This scales the entire
distance function. Here, probability of detection on the transect is
known to be 0.8.
dfunc <- dfuncEstim(formula = dist ~ observer + groupsize(groupsize)
, likelihood = "hazrate"
, detectionData = sparrowDetectionData
, siteData = sparrowSiteData
, g.x.scl = 0.8)
dfunc
## Call: dfuncEstim(formula = dist ~ observer + groupsize(groupsize),
## detectionData = sparrowDetectionData, siteData = sparrowSiteData,
## likelihood = "hazrate", g.x.scl = 0.8)
## Coefficients:
## Estimate SE z p(>|z|)
## (Intercept) 3.999741284 0.1316422 30.38342405 9.095471e-203
## observerobs2 0.140084714 0.1737914 0.80605073 4.202136e-01
## observerobs3 0.004448866 0.1452435 0.03063039 9.755643e-01
## observerobs4 -0.423433582 0.1612356 -2.62617956 8.634925e-03
## observerobs5 -0.151863042 0.1508744 -1.00655270 3.141498e-01
## k 3.117839044 0.3313693 9.40895644 5.010870e-21